About Me

I am an Assistant Professor in Health Informatics and Information Systems at the University of Ottawa. I also hold an Adjunct Faculty position at the Faculty of Computer Science at Dalhousie University. Before that, I was a Research Associate and Post-Doctoral Fellow at the NICHE Research Group at Dalhousie University. I was a teaching assistant for 6 years at the Vrije Universiteit Brussel, obtaining the degree of Doctor in Sciences in 2013.
Research Interests
My research interests lie at the crossroads of Knowledge Representation and Reasoning (KR), Information Systems (IS) engineering, and Mobile Computing. In particular, I am interested in applying these technologies to innovate domains such as healthcare, law, government and business.
Publications
2017
Hossein Mohammadhassanzadeh; William Van Woensel; Samina Raza Abidi; Syed Sibte Raza Abidi
Semantics-based Plausible Reasoning to Extend the Knowledge Coverage of Medical Knowledge Bases for Improved Clinical Decision Support Journal Article
In: Journal of BioData Mining, vol. 10, no. 7, 2017.
Abstract | Links | BibTeX | Tags: Analogical reasoning, Inductive generalization, Medical knowledge bases, Plausible reasoning, Semantic Web reasoning
@article{Mohammadhassanzadeh2017,
title = {Semantics-based Plausible Reasoning to Extend the Knowledge Coverage of Medical Knowledge Bases for Improved Clinical Decision Support},
author = {Hossein Mohammadhassanzadeh and William Van Woensel and Samina Raza Abidi and Syed Sibte Raza Abidi},
url = {http://rdcu.be/paPY},
doi = {10.1186/s13040-017-0123-y},
year = {2017},
date = {2017-02-10},
journal = {Journal of BioData Mining},
volume = {10},
number = {7},
abstract = {Background
Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians’ experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning, which generalizes the commonalities among the data to induce new rules, and analogical reasoning, which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries.
Results
We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15%, and 20% of missing values. This expansion in the KB coverage allowed solving complex disease diagnostic queries that were previously unresolvable, without losing the correctness of the answers. However, compared to deductive reasoning, data-intensive plausible reasoning mechanisms yield a significant performance overhead.
Conclusions
We observed that plausible reasoning approaches, by generating tentative inferences and leveraging domain knowledge of experts, allow us to extend the coverage of medical knowledge bases, resulting in improved clinical decision support. Second, by leveraging OWL ontological knowledge, we are able to increase the expressivity and accuracy of plausible reasoning methods. Third, our approach is applicable to clinical decision support systems for a range of chronic diseases.},
keywords = {Analogical reasoning, Inductive generalization, Medical knowledge bases, Plausible reasoning, Semantic Web reasoning},
pubstate = {published},
tppubtype = {article}
}
Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians’ experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning, which generalizes the commonalities among the data to induce new rules, and analogical reasoning, which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries.
Results
We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15%, and 20% of missing values. This expansion in the KB coverage allowed solving complex disease diagnostic queries that were previously unresolvable, without losing the correctness of the answers. However, compared to deductive reasoning, data-intensive plausible reasoning mechanisms yield a significant performance overhead.
Conclusions
We observed that plausible reasoning approaches, by generating tentative inferences and leveraging domain knowledge of experts, allow us to extend the coverage of medical knowledge bases, resulting in improved clinical decision support. Second, by leveraging OWL ontological knowledge, we are able to increase the expressivity and accuracy of plausible reasoning methods. Third, our approach is applicable to clinical decision support systems for a range of chronic diseases.