About Me
Publications
2022
Benjamin Rose-Davis; William Van Woensel; Samina Raza Abidi; Elizabeth Stringer; Syed Sibte Raza Abidi
In: International Journal of Medical Informatics, 2022.
Links | BibTeX | Tags: Argument Theory, Knowledge Graphs, Patient Education, Semantic Web
@article{davis2022,
title = {Semantic Knowledge Modeling and Evaluation of Argument Theory to Develop Dialogue based Patient Education Systems for Chronic Disease Self-Management},
author = {Benjamin Rose-Davis and William Van Woensel and Samina Raza Abidi and Elizabeth Stringer and Syed Sibte Raza Abidi},
url = {https://www.sciencedirect.com/science/article/abs/pii/S1386505622000077},
year = {2022},
date = {2022-01-19},
urldate = {2022-01-18},
journal = {International Journal of Medical Informatics},
keywords = {Argument Theory, Knowledge Graphs, Patient Education, Semantic Web},
pubstate = {published},
tppubtype = {article}
}
2021
William Van Woensel; Samina Abidi; Syed Sibte Raza Abidi
Towards Model-Driven Semantic Interfaces for Electronic Health Records on Multiple Platforms Using Notation3 Inproceedings
In: 4th International Workshop on Semantic Web Meets Health Data Management (SWH’21) co-located with 20th International Semantic Web Conference (ISWC’21), 2021.
Links | BibTeX | Tags: Electronic Medical Record, Model-driven Engineering, Semantic Web
@inproceedings{wvw_swh_21,
title = {Towards Model-Driven Semantic Interfaces for Electronic Health Records on Multiple Platforms Using Notation3},
author = {William Van Woensel and Samina Abidi and Syed Sibte Raza Abidi},
url = {http://ceur-ws.org/Vol-3055/paper4.pdf},
year = {2021},
date = {2021-10-24},
urldate = {2021-10-24},
booktitle = {4th International Workshop on Semantic Web Meets Health Data Management (SWH’21) co-located with 20th International Semantic Web Conference (ISWC’21)},
keywords = {Electronic Medical Record, Model-driven Engineering, Semantic Web},
pubstate = {published},
tppubtype = {inproceedings}
}
2020
William Van Woensel; Samina Abidi; Borna Jafarpour; Syed Sibte Raza Abidi
A CIG Integration Framework to Provide Decision Support for Comorbid Conditions using Transaction-based Semantics and Temporal Planning Inproceedings
In: International Conference on Artificial Intelligence in Medicine (AIME 2020), 2020.
Abstract | BibTeX | Tags: Clinical Decision Support Systems, Clinical Practice Guidelines, Comorbidities, Ontology, Semantic Web
@inproceedings{VANWOENSEL2020-COCIG1,
title = {A CIG Integration Framework to Provide Decision Support for Comorbid Conditions using Transaction-based Semantics and Temporal Planning},
author = {William Van Woensel and Samina Abidi and Borna Jafarpour and Syed Sibte Raza Abidi},
year = {2020},
date = {2020-08-01},
urldate = {2020-08-01},
booktitle = {International Conference on Artificial Intelligence in Medicine (AIME 2020)},
abstract = {Managing comorbid conditions, i.e., patients with multiple medical conditions, is quite challenging for Clinical Decision Support Systems (CDSS) based on computerized Clinical Practice Guidelines (CPG). In case of comorbidity, CDSS will need to recommend treatments from multiple different CPG, which may adversely interact (e.g., drug-disease interactions), or introduce inefficiencies. A-priori, static integration of computerized comorbid CPG is insufficient for clinical practice. In this paper, we present a solution for dynamic integration of CPG in response to evolving health profiles. Using Description and Transaction Logics, we define a set of CIG integration semantics for encoding integration decisions that cope with comorbidity issues at execution-time. These dynamic, transaction-based semantics are well-suited to roll back prior decisions when no longer safe or efficient; or, inversely, apply new decisions when relevant. Moreover, comorbid CIG integration should consider temporal properties of CIG tasks—at execution-time, these properties will be influenced by a range of temporal constraints. Given all temporal constraints, optimal task schedules will be calculated that will determine the feasibility of CIG integration decisions.},
keywords = {Clinical Decision Support Systems, Clinical Practice Guidelines, Comorbidities, Ontology, Semantic Web},
pubstate = {published},
tppubtype = {inproceedings}
}
William Van Woensel; Patrice C Roy; Syed Sibte Raza Abidi; Samina Raza Abidi
Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods Journal Article
In: Artificial Intelligence in Medicine, 108 , pp. 101931, 2020, ISSN: 0933-3657.
Abstract | Links | BibTeX | Tags: Activities of daily living, Ambient assisted living, Ambient Intelligence, Ambient sensors, Chronic disease self-management, Data fusion, eHealth Platform, Indoor Localization, Machine Learning, Self-Management, Semantic Web, Virtual care
@article{VANWOENSEL2020101931,
title = {Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods},
author = {William Van Woensel and Patrice C Roy and Syed Sibte Raza Abidi and Samina Raza Abidi},
url = {http://www.sciencedirect.com/science/article/pii/S0933365720301275
https://authors.elsevier.com/a/1bTwR3KEGaD3xR},
doi = {https://doi.org/10.1016/j.artmed.2020.101931},
issn = {0933-3657},
year = {2020},
date = {2020-01-01},
journal = {Artificial Intelligence in Medicine},
volume = {108},
pages = {101931},
abstract = {In a digitally enabled healthcare setting, we posit that an individual’s current location is pivotal for supporting many virtual care services—such as tailoring educational content towards an individual’s current location, and, hence, current stage in an acute care process; improving activity recognition for supporting self-management in a home-based setting; and guiding individuals with cognitive decline through daily activities in their home. However, unobtrusively estimating an individual’s indoor location in real-world care settings is still a challenging problem. Moreover, the needs of location-specific care interventions go beyond absolute coordinates and require the individual’s discrete semantic location; i.e., it is the concrete type of an individual’s location (e.g., exam vs. waiting room; bathroom vs. kitchen) that will drive the tailoring of educational content or recognition of activities. We utilized Machine Learning methods to accurately identify an individual’s discrete location, together with knowledge-based models and tools to supply the associated semantics of identified locations. We considered clustering solutions to improve localization accuracy at the expense of granularity; and investigate sensor fusion-based heuristics to rule out false location estimates. We present an AI-driven indoor localization approach that integrates both data-driven and knowledge-based processes and artifacts. We illustrate the application of our approach in two compelling healthcare use cases, and empirically validated our localization approach at the emergency unit of a large Canadian pediatric hospital.},
keywords = {Activities of daily living, Ambient assisted living, Ambient Intelligence, Ambient sensors, Chronic disease self-management, Data fusion, eHealth Platform, Indoor Localization, Machine Learning, Self-Management, Semantic Web, Virtual care},
pubstate = {published},
tppubtype = {article}
}
2017
Hossein Mohammadhassanzadeh; Samina Raza Abidi; Mohammad Salman Shah; Mehdi Karamollahi; Syed Sibte Raza Abidi
SeDAn: A Plausible Reasoning Approach for Semantics-based Data Analytics in Healthcare Inproceedings
In: Workshop on Artificial Intelligence with Application in Health, 16th International Conference of the Italian Association for Artificial Intelligence, Bari, Italy, 2017.
Links | BibTeX | Tags: Health Data Analytics, Knowledge Management, Plausible reasoning, Semantic Web
@inproceedings{DBLP:conf/aiia/Mohammadhassanzadeh17,
title = {SeDAn: A Plausible Reasoning Approach for Semantics-based Data Analytics in Healthcare},
author = {Hossein Mohammadhassanzadeh and Samina Raza Abidi and Mohammad Salman Shah and Mehdi Karamollahi and Syed Sibte Raza Abidi},
url = {http://ceur-ws.org/Vol-1982/paper7.pdf},
year = {2017},
date = {2017-11-14},
booktitle = {Workshop on Artificial Intelligence with Application in Health, 16th International Conference of the Italian Association for Artificial Intelligence},
address = {Bari, Italy},
keywords = {Health Data Analytics, Knowledge Management, Plausible reasoning, Semantic Web},
pubstate = {published},
tppubtype = {inproceedings}
}
2016
Wasif Hasan Baig
A Semantic Web Based Knowledge Management Framework to Model Behaviour Change Constructs for Generation of Personalized Action Plans Masters Thesis
Dalhousie University, 2016.
Links | BibTeX | Tags: Behavioural Theory, Chronic Illness, Knowledge Modelling, Ontology Engineering, Patient Empowerment, Personalized Medicine, Self-Management, Semantic Web, Social Cognition Theory
@mastersthesis{Baig-Wasif-MHI-HINF,
title = {A Semantic Web Based Knowledge Management Framework to Model Behaviour Change Constructs for Generation of Personalized Action Plans},
author = {Wasif Hasan Baig},
url = {https://niche.cs.dal.ca/wp-content/uploads/2016/01/Baig-Wasif-MHI-HINF-September-2015.pdf},
year = {2016},
date = {2016-09-01},
school = {Dalhousie University},
keywords = {Behavioural Theory, Chronic Illness, Knowledge Modelling, Ontology Engineering, Patient Empowerment, Personalized Medicine, Self-Management, Semantic Web, Social Cognition Theory},
pubstate = {published},
tppubtype = {mastersthesis}
}
Hossein Mohammadhassanzadeh; William Van Woensel; Samina Raza Abidi; Syed Sibte Raza Abidi
A Semantic Web-based Approach to Plausible Reasoning for Improving Clinical Knowledge Engineering Inproceedings
In: IEEE International Conference on Biomedical and Health Informatics, Las Vegas, 2016.
Abstract | BibTeX | Tags: Clinical Decision Support Systems, Plausbile Reasoning, Semantic Web
@inproceedings{Mohammadhassanzadeh2016,
title = {A Semantic Web-based Approach to Plausible Reasoning for Improving Clinical Knowledge Engineering},
author = {Hossein Mohammadhassanzadeh and William Van Woensel and Samina Raza Abidi and Syed Sibte Raza Abidi},
year = {2016},
date = {2016-02-24},
urldate = {2016-02-24},
booktitle = {IEEE International Conference on Biomedical and Health Informatics, Las Vegas},
abstract = {In this paper, we present a semantic web based knowledge engineering approach to extend the coverage of medical knowledge-based systems in order to solve complex medical queries that demand the integration of deterministic and plausible knowledge. We leverage plausible reasoning mechanisms, which exploit associations between the underlying domain-specific data, as well as tentative domain knowledge, to extend the coverage of a medical knowledge base. We demonstrate that Semantic Web technologies, due to their efficient solutions for federated data management and built-in DL-based inferencing methods, offer useful opportunities to support plausible reasoning for medical decision support tasks. We evaluated our multi-strategy medical reasoning approach using real-world medical data. Our results illustrate that plausible reasoning improved the knowledge coverage of the original medical knowledge base by 10-12%, and in turn helped to solve complex disease diagnostic queries.},
keywords = {Clinical Decision Support Systems, Plausbile Reasoning, Semantic Web},
pubstate = {published},
tppubtype = {inproceedings}
}
Borna Jafarpour; Syed Sibte Raza Abidi; Samina Raza Abidi
Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines Journal Article
In: IEEE Journal of Biomedical and Health Informatics, 20 (1), pp. 388-398, 2016, ISSN: 2168-2194.
Abstract | Links | BibTeX | Tags: Clinical Decision Support Systems, Clinical Practice Guidelines, OWL, Semantic Web
@article{Jafarpour:IeeeJournalOfBiomedicalAndHealthInformat,
title = {Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines},
author = {Borna Jafarpour and Syed Sibte Raza Abidi and Samina Raza Abidi},
url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6990486&isnumber=7369993},
doi = {10.1109/JBHI.2014.2383840},
issn = {2168-2194},
year = {2016},
date = {2016-01-01},
journal = {IEEE Journal of Biomedical and Health Informatics},
volume = {20},
number = {1},
pages = {388-398},
abstract = {Computerizing paper-based CPG and then executing them can provide evidence-informed decision support to physicians at the point of care. Semantic web technologies especially Web Ontology Language (OWL) ontologies have been profusely used to represent computerized CPG. Using semantic web reasoning capabilities to execute OWL based computerized CPG unties them from a specific custom-built CPG execution engine and increases their shareability as any OWL reasoner and triple store can be utilized for CPG execution. However, existing semantic web reasoning based CPG execution engines suffer from lack of ability to execute CPG with high levels of expressivity, high cognitive load of computerization of paper-based CPG and updating their computerized versions. In order to address these limitations, we have developed three CPG execution engines based on OWL 1 DL, OWL 2 DL and OWL 2 DL + Semantic Web Rule Language (SWRL). OWL 1 DL serves as the base execution engine capable of executing a wide range of CPG constructs, however for executing highly complex CPG the OWL 2 DL and OWL 2 DL + SWRL offer additional executional capabilities. We evaluated the technical performance and medical correctness of our execution engines using a range of CPG. Technical evaluations show the efficiency of our CPG execution engines in terms of CPU time and validity of the generated recommendation in comparison to existing CPG execution engines. Medical evaluations by domain experts show the validity of the CPG-mediated therapy plans in terms of relevance, safety, and ordering for a wide range of patient scenarios.},
keywords = {Clinical Decision Support Systems, Clinical Practice Guidelines, OWL, Semantic Web},
pubstate = {published},
tppubtype = {article}
}
2015
William Van Woensel; Hossein Mohammadhassanzadeh; Samina Raza Abidi; Syed Sibte Raza Abidi
Multi-Strategy Semantic Web Reasoning for Medical Knowledge Bases Inproceedings
In: Proceedings of International Workshop on Biomedical Data Mining, Modeling, and Semantic Integration: A Promising Approach to Solving Unmet Medical Needs (BDM2I2015), 2015.
Links | BibTeX | Tags: Health Informatics, Knowledge Based Systems, Ontology, Semantic Web
@inproceedings{DBLP:conf/semweb/WoenselMAA15,
title = {Multi-Strategy Semantic Web Reasoning for Medical Knowledge Bases},
author = {William Van Woensel and Hossein Mohammadhassanzadeh and Samina Raza Abidi and Syed Sibte Raza Abidi},
url = {http://ceur-ws.org/Vol-1428/BDM2I_2015_paper_8.pdf},
year = {2015},
date = {2015-10-11},
booktitle = {Proceedings of International Workshop on Biomedical Data Mining, Modeling, and Semantic Integration: A Promising Approach to Solving Unmet Medical Needs (BDM2I2015)},
keywords = {Health Informatics, Knowledge Based Systems, Ontology, Semantic Web},
pubstate = {published},
tppubtype = {inproceedings}
}