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Abstract. Assisted Ambient Living (AAL) focuses on self-sufficiency, assisting 

disabled people (in particular, cognitive decline) to perform activities of daily 

living (ADL) such as housework and taking medication, by automating assistive 

actions in smart environments. We argue that AAL provides opportunities for 

pro-active assistance of cognitively disabled patients, which involves dynami-

cally guiding them through an ADL and correcting their actions when required. 

Activity recognition is a pivotal task in this effort, since it allows detecting when 

an ADL is started by recognizing its constituent activities. When dealing with 

diseases such as cognitive decline, activity recognition should be able to detect 

when activities are performed incorrectly as well – e.g., performed out-of-order, 

at the wrong location or time, or with the wrong objects (e.g., utensils) – which 

is nevertheless not a common goal in knowledge-driven activity recognition. In 

this paper, we present an approach to computerize complex ADL workflows, us-

ing an OWL ontology to represent tasks and their temporal relations, in order to 

realize continuous, pro-active patient assistance. This process is supported by 

fine-grained, knowledge-driven activity recognition, which employs semantic 

reasoning to recognize both correct and incorrect actions based on their associ-

ated context and temporal relations. 

Keywords: assisted ambient living, activity recognition, semantic reasoning. 

1 Introduction 

In the current context of ageing populations and longevity of chronic patients, reducing 

the burden on the healthcare system, while ensuring patients’ quality of life, requires 

patients to remain self-sufficient for as long as possible. Assisted Ambient Living 

(AAL) [1] focuses on self-sufficiency, assisting disabled people (in particular, cogni-

tive decline) to perform activities of daily living (ADL) [2, 3], such as housework, med-

ication adherence, and healthy activities. To that end, AAL utilizes smart environments 

to automate assistive actions, such as influencing environment conditions (e.g., setting 

temperature, light intensity), providing instructions to the patient (e.g., how to perform 

an ADL), and issuing alerts in case of unusual activities (e.g., falling). Currently, smart 
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hardware, including sensors, actuators and displays, is available off-the-shelf (home 

automation), and software frameworks [4] for interacting with smart environments, as 

well as ontologies (e.g., SOUPA [5], HomeADL [6]) for describing context in smart 

homes, have been developed and published over the last decade. Consumer smart 

phones and smartwatches have become ubiquitous and affordable, adding accurate per-

sonal sensors (movement, activity) and communication capabilities to a smart home. 

In the context of cognitive decline, AAL provides opportunities for the pro-active 

assistance of patients, dynamically guiding them through an ADL while it is being per-

formed, and correcting their actions when needed. As for any AAL process, activity 

recognition will be a pivotal task as it enables the detection of constituent activities of 

complex ADL. Data-driven, machine-learning based techniques have proven their use-

fulness in achieving high-accuracy activity recognition, but these require a training da-

taset and are less suitable to recognize high-level, complex ADL activities. Knowledge-

driven activity recognition approaches [7, 8] model high-level ADL activities and their 

constituent actions, and utilize semantic reasoning to classify unknown activities into a 

known, high-level activity class. Nevertheless, when dealing with cognitive decline, 

coping with incorrect activities is paramount; e.g., out-of-order, at the wrong time or 

location, or utilizing wrong objects (e.g., utensils). To the best of our knowledge, this 

is not a main goal of current knowledge-driven approaches. Moreover, any real-world 

ADL, even relatively simple ones such as taking medication or making tea, will include 

complex temporal relations that go beyond what is featured in the state of the art.  

 We present an initial approach to computerizing complex ADL workflows, using an 

OWL ontology to represent ADL tasks and their temporal relations. As the main 

knowledge artifacts, these workflows form the basis for fine-grained, knowledge-

driven activity recognition, which employs semantic reasoning to recognize both cor-

rect and incorrect actions. We formally define the semantics of our proposed temporal 

relations, which are borrowed from general and specialized (e.g., Clinical Practice 

Guideline) workflow languages, as well as high-level UI design methods, using state 

transition rules. On top of this component, a continuous process pro-actively guides 

patients through the recognized ADL, based on recognized tasks and their associated 

ADL workflows, by issuing prompts when necessary.  

This paper is structured as follows. Section 2 proposes a set of useful temporal rela-

tions and elaborates on their formal definitions. Section 3 details the activity recogni-

tion process, and Section 4 discusses a pro-active guidance process. In Section 5, we 

present our prototype together with preliminary experimental results, and Section 6 

summarizes related work. Finally, Section 7 presents conclusions and future work.  

2 ADL Knowledge Model 

2.1 Modeling Tasks and Temporal Relations 

To model useful ADL workflows, we draw inspiration from formalisms for general-

purpose workflows (e.g., UML activity diagrams, BPMN), computerizing Clinical 

Practice Guidelines (CPG), as well as high-level UI-design task models. Workflow lan-

guages typically include constructs to indicate start- and endpoints, and sequential, 
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choice and parallel (with split and join) relations between tasks. CPG workflow lan-

guages typically support nesting as well, with high-level clinical tasks having multiple 

sub-tasks; and pre- and post-conditions (effects), e.g., referring to the patient’s condi-

tion [9]. Also, tasks may be explicitly assigned to a patient or physician. In the UI de-

sign domain, Paterno et al. introduced the ConcurTaskTree method [10] for designing 

high-level UI task models. CTT similarly supplies a hierarchical structuring of tasks, a 

set of temporal relations, task assignment to different parties, and associated task ob-

jects/attributes. To reflect the logical task structure, CTT utilizes a tree-like hierarchical 

graphical syntax. Applying a UI design formalism in this setting is not as unfit as it may 

sound: comparable to using a PC, users interact with a smart home, utilizing smart 

hardware and everyday household objects outfitted with embedded sensors. Indeed, the 

strong focus of CTT on task hierarchies, as well as its set of diverse temporal relations, 

suits the context of AAL quite well; ADLs are typically decomposable into multiple 

levels of tasks, and many temporal constraints bind the correct performance of an ADL.  

We propose six workflow relations when modeling ADL (based on Paterno et al. 

[10]). We note that their precedence (i.e., when used at the same hierarchy level) is in 

the same order as presented.  

─ Hierarchical (tree structure): indicates the decomposition of a composite task into 

multiple lower-level tasks. The composite task is considered complete once all of its 

(non-optional) constituent tasks are completed.  

─ Sequential (T1 >> T2): defines an ordering between the two operands; i.e. the second 

task (T2) cannot be begin before the first task is completed (T1).  

We further introduce the timeout-sequential conditional-sequential subtypes:  

 Timeout-sequential (T1 >><timeout> T2): after the first task (T1) is completed, the 

second (T2) may only start once a certain timespan has passed. 

 Conditional-sequential relation (T1 >>[condition] T2): after the first task (T1) is com-

pleted, the second task (T2) may only start once a condition is fulfilled.  

─ Order independent (T1 |=| T2): the operands (T1, T2) can be performed in any order.  

─ Alternative (T1 [] T2): the user can choose to perform either task operand; once a 

choice is made, the other task can no longer be started.  

We further introduce the following subtype:  

 Conditional-alternative (T1 [cond] T2): the left operand (T1) can only be per-

formed if the condition is satisfied; else, the right operand (T2) is performed.  

─ Optional ([T]): performing the task is not mandatory and may be skipped.  

─ Iterative (T{n, m}): a task may be carried out once or multiple times 

Compound tasks are indicated as an empty circle (○); depending on whether an atomic 

task is assigned to the user (i.e., patient) or to the smart home system, a filled circle (●) 

or a filled square (■) is utilized, respectively. Fig. 1 shows an example ADL for taking 

medications, decomposed using the presented workflow relations. As can be seen, the 

ADL workflow allows many degrees of freedom: getting a glass and opening the water 

tap can be done in any order, as well as closing the tap and putting the glass away. 

However, both the former two tasks (GetWater) must be completed before the latter 

two tasks (StopGettingWater); it would not make sense to put the glass away before the 



4 

water tap is opened or vice-versa, to close the tap before getting a glass. This sequential 

relation can have either a time interval (3s) or condition (glass half-full) depending on 

available sensors. Note that getting a pill, which consists of opening and then closing 

the pillbox, may also be interleaved (order independent) with any of the other tasks. 

 

Fig. 1. Example ADL workflow, TakeMedication. 

2.2 SmartAssist Ontology (SAO) 

In this section, we introduce the SmartAssist Ontology (SAO), which formally defines 

ADL tasks and the proposed set of temporal relations (Section 2.1). Fig. 1 shows an ER 

diagram with the classes and relations in this ontology. 

 

Fig. 2. SmartAssist Ontology: classes and relations. 

Note that the ontology also connects each Task to a particular Context with regards 

to e.g., time, location and utilized objects. To support the formal semantics of temporal 

relations, each task also has an associated State (inactive, active, started, completed, or 

error). Fig. 3 illustrates these states and the potential transitions between them.  

 

Fig. 3. Task states and transitions between them. 

A task is active when it is next in line for execution, according to the workflow of 

the ADL (multiple tasks may be active at the same time). Inversely, inactive means that 

the task should not be executed at this time. The completed state indicates that the task 

was executed by the user. In case an error is detected with regards to the task’s execu-

tion, the state will transition to the error state. 
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The formal semantics of a temporal relation is defined in terms of rules that govern 

transitions between task states, in line with their descriptions from Section 2.2. These 

formal semantics are included in the OWL ontology. We list them below using De-

scription Logic notation [11]. To simplify these DL expressions, we assume each Task 

is assigned a type based on its current state: e.g., a task in the completed state will be 

assigned the Completed type; and a task in any other state will be assigned Incompleted. 

Each task is initially in the inactive state. We note that these rules focus on the temporal 

relations in particular, and do not consider e.g., checking context (e.g., time, location). 

(a) Inactive  Active 

(a.1) 𝐴𝐷𝐿 ∪ (𝑇𝑎𝑠𝑘 ∩ ∃𝑠𝑢𝑏𝑇𝑎𝑠𝑘𝑂𝑓. (𝐴𝑐𝑡𝑖𝑣𝑒) ∩ ¬(∃𝑟𝑖𝑔ℎ𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛))) ⊆ 

∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.2) 𝑇𝑎𝑠𝑘 ∩ ∃𝑟𝑖𝑔ℎ𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝐿𝑒𝑓𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑. (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∪

𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑛𝑒𝑥𝑡𝐼𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒} 

(a.3) 𝑁𝑒𝑥𝑡𝐼𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∩ ∃𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.4) 𝑁𝑒𝑥𝑡𝐼𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∩ ∃𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩

∃ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. (𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.5) 𝑁𝑒𝑥𝑡𝐼𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ∩ ∃𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝑇𝑖𝑚𝑒𝑜𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝑇𝑖𝑚𝑒𝑜𝑢𝑡. (𝐷𝑜𝑛𝑒)) ⊆

∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.6) 𝑇𝑎𝑠𝑘 ∩ ∃𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑑𝑒𝑝𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑛𝑑. (𝐴𝑐𝑡𝑖𝑣𝑒)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.7) 𝑇𝑎𝑠𝑘 ∩ ∃𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑛𝑑. (𝐴𝑐𝑡𝑖𝑣𝑒)) ⊆

∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(a.8) 𝑇𝑎𝑠𝑘 ∩ ∃𝑟𝑖𝑔ℎ𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝐿𝑒𝑓𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑. (𝐴𝑐𝑡𝑖𝑣𝑒) ∩

∃ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. (𝑈𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑎𝑐𝑡𝑖𝑣𝑒} 

(b) Active  Inactive 

(b.1) 𝑇𝑎𝑠𝑘 ∩ 𝐴𝑐𝑡𝑖𝑣𝑒 ∩ ∃𝑙𝑒𝑓𝑡𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓. (𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩

∃ℎ𝑎𝑠𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. (𝑈𝑛𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒} 

(c) Active  Complete 

(c.1) 𝑇𝑎𝑠𝑘 ∩ ∀𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑂𝑓(𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∩ ∃ℎ𝑎𝑠𝑂𝑝𝑒𝑟𝑎𝑛𝑑. (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑)) ⊆

∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑} 

(c.2) 𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑇𝑎𝑠𝑘 ∩ ¬(∃ℎ𝑎𝑠𝑆𝑢𝑏𝑇𝑎𝑠𝑘. (𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑)) ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑} 

(d) Completed  Inactive 

(d.1) 𝑇𝑎𝑠𝑘 ∩ 𝐴𝑐𝑡𝑖𝑣𝑒 ∩ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ∩ (𝐴𝐷𝐿 ∪ (∃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑆𝑢𝑏𝑇𝑎𝑠𝑘𝑂𝑓. (𝐴𝐷𝐿 ∩ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑)) ⊆

∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒}  

(e) Completed  Error 

(e.1) 𝑇𝑎𝑠𝑘 ∩ 𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ∩ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ⊆ ∃ℎ𝑎𝑠𝑆𝑡𝑎𝑡𝑒. {𝑒𝑟𝑟𝑜𝑟} 

Rule (a.1) allows each ADL to be started at any time, by assigning the active state 

to all high-level ADL tasks as well as each (constituent) “starting” task, i.e., not occur-

ring as a right relation operand and with an active supertask. (As noted, this rule would 

need to be extended to check whether associated context is satisfied.). Firstly, this rule 

“left-activates” each ADL, assigning the active state to all of its left-most tasks (at any 

hierarchy level) – meaning the user may complete them at any time, and thus start the 

ADL. Secondly, when a compound task is activated in another way, this rule will acti-

vate its left-most subtask(s), thus allowing it to be completed by the user.  
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Rule (a.2) ensures that the right operand task of a sequential relation is only activated 

when the relation’s left operand task is either Completed or Optional. It does this by 

assigning the nextInSequence temporary state to the right operand task, which is utilized 

by rules (a.3) – (a.5) to then activate the right operand task by default (a.3), or only 

when its given condition is met (a.4) or timeout has elapsed (a.5). Rule (a.6) and (a.7) 

state that any operand task of an order independent relation, or a default alternative 

relation (i.e., no associated condition), becomes active when one of the operand tasks 

was activated (e.g., due to rule (a.1) or (a.3)-(a.5)). When the relation’s condition is not 

met, rule (a.8) activates the right operand of a conditional-alternative relation, and rule 

(b.1) deactivates the left operand task. Else, the left operand task will simply remain 

active (since it will have been left-activated). Rule (c.1) ensures that a task in an alter-

native relation is completed whenever the other operand task is completed, meaning the 

user may only execute one alternative task. Rule (c.2) marks a compound task as com-

pleted once it no longer has any incomplete subtasks. Note that an atomic task will be 

marked as completed depending on the detected context (Section 3). Once the ADL is 

completed, completed constituent tasks, as well as the high-level ADL task, will tran-

sition back to inactive (d.1). In case a task was completed while being in the inactive 

state (transition f), rule (e.1) assigns the error state to a task, since it was not executed 

in line with the ADL workflow. Note that detected context may also indicate an error 

(e.g., using the wrong utensil). Finally, although a task can thus be in multiple states 

(e.g., (d.1), (e.1)), the inactive state is retracted once a task is activated.  

3 Knowledge-Driven Activity Recognition Using SAO 

By applying semantic reasoning based on the proposed task state transition rules (Sec-

tion 2.2), based on ADL workflows and detected user actions (i.e., low-level tasks), our 

approach is able to recognize the current states of ADL activities (i.e., high-level tasks). 

In doing so, we realize high-level, knowledge-driven activity recognition (AR): recog-

nizing the start and completion of higher-level tasks, based on the execution of their 

constituent, lower-level tasks (hierarchical relation); and flagging incorrectly per-

formed tasks (e.g., out-of-order) as erroneous, based on temporal relations. On top of 

state transition rules, the system will also raise an error when, once the ADL is started 

(i.e., one of its constituent atomic tasks is completed), an activated atomic task is not 

completed within a reasonable time. We note that this approach allows dealing with 

multiple, simultaneously started ADL, with the user performing their constituent tasks 

in any interleaved way. To detect the actions that drive a knowledge-driven AR, i.e., 

indicating task completion and individual task errors, we rely on sensor data processing 

techniques, as elaborated by Ni et al [12]. Each time an atomic action is detected, the 

semantic reasoning process is executed. Activity recognition results are passed to the 

top-level component, i.e., knowledge-driven pro-active assistance (Section 4). 
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4 Knowledge-Driven, Pro-active Assistance using SAO 

Pro-active assistance can be divided into two facets: (1) guidance and (2) troubleshoot-

ing. In the first facet, assistive acts are issued to guide the patient through their daily 

ADL routines. When an ADL is overdue (e.g., based on its associated context), the 

system prompts the patient with increased urgency until the ADL is carried out, thus 

ensuring that their daily routine continues as expected. In line with the increased ur-

gency of executing the ADL as time passes, we apply an evolving notification lifecycle 

[13]; i.e., where interaction resources (e.g., icons, audio & haptic feedback) increase in 

obtrusiveness over time, together with notification frequency, until the activity is per-

formed. (This step is not the focus of this paper.) Secondly, our knowledge-driven ap-

proach allows, once an ADL is started, to keep the patient appraised of their current 

progress in the workflow. E.g., in case a patient is carrying out a cooking activity, as-

sistive acts provide information about the activity’s progression (current subtask) and 

its current state (instructions, location of utensils and ingredients, etc.) on the patient’s 

smartphone or nearby devices (e.g., TV or tablet) [14, 15]. 

 The second facet, i.e. troubleshooting, occurs when an activity is performed incor-

rectly. In that case, assistive acts are needed to prompt the patient about the error and 

explain the appropriate workflow. There are multiple ways in which a patient can in-

correctly carry out an activity. First, an error occurs when the user did not perform an 

activated atomic task in time while carrying out an ADL, which will lead to the system 

issuing a reminder to the patient about the started activity. Our novel activity recogni-

tion process is able to detect a second type of error as well, occurring when a task was 

recognized (i.e., completed) but not yet activated (Section 2.2, rule (e)). In this case, 

the system prompt depends on the relevant temporal relation(s); we note that the rec-

ognized task may contradict more than one temporal relation (e.g., the completed task 

is located at the end of the workflow but currently active tasks are at the front). 

5 Knowledge-driven Activity Recognition Prototype 

We implemented a prototype utilizing the SAO ontology to evaluate the feasibility of 

our activity recognition approach. The SAO prototype ontology1 includes the TakeMed-

ication workflow from Fig. 1. Our prototype performs the following operations, utiliz-

ing the Hermit reasoner (v. 1.3.8.4) for the semantic reasoning step, i.e., reasoning over 

the DL transition rules:  

 Ontology loading: utilizing the Hermit API to load the SAO ontology and encoded 

ADL workflow.  

 Initialization: performing the semantic reasoning step once after loading, to “left-

activate” each ADL. 

 Detected action: performing the semantic reasoning step after a single low-level 

action has been detected. An error will be flagged if the detected action is not in 

line with the temporal relations in the ADL workflow. 

                                                           
1 https://niche.cs.dal.ca/ontologies/sao.owl  

https://niche.cs.dal.ca/ontologies/sao.owl
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We performed a preliminary evaluation of our activity recognition approach, exe-

cuting 10 simulated scenarios for the TakeMedication ADL (Fig. 1) with the patient 

performing the 6 low-level tasks (actions) in different orders; with 5 scenarios where 

the patient “correctly” performed the ADL and 5 scenarios where the ADL is “incor-

rectly” performed (i.e., out-of-order tasks). We ran the experiments on a Lenovo Think-

Pad T530 laptop running Windows 7, with an Intel Core i7-3520M CPU (2.90 GHz) 

and 8Gb of RAM. We ran each scenario 10 times and retrieved the average performance 

results of each operation (Table 1). The prototype was able to properly detect each of 

the incorrectly performed actions in the simulated scenarios. 

Operation Average processing time (ms) 

Ontology loading 26 
Initialization 148 

Detected action 214 

Table 1. Activity recognition performance. 

6 Related Work 

Data-driven activity recognition is defined as applying machine learning techniques to 

train an activity model, based on a (labeled) dataset. Such approaches do not need an a 

priori designed knowledge artifact (e.g., workflows), and have been shown to achieve 

high accuracy. However, they require an initial, patient-specific dataset, and are less 

suitable for recognizing high-level, complex activities [8]. Instead, knowledge-driven 

activity recognition relies on an a priori designed knowledge artifact. A subcategory of 

knowledge-driven approaches (including ourselves) applies logical reasoning to infer 

high-level activities from detected low-level actions. To that end, Chen et al. [7] defines 

a set of activity classes with constraints on which properties (e.g., hasLocation, hasCon-

tainer) and which values (e.g., HotDrink, Kitchen) they can be associated with. At 

runtime, low-level sensor observations (e.g., type of container, location) are attached to 

an object instance, and activity recognition is executed by attempting to classify the 

instance as an activity class (e.g., MakeDrink). As more properties are attached to the 

instance, it becomes possible to classify it as a more specific activity (e.g., MakeTea). 

The authors raise the option of reminding patients when an activity cannot be recog-

nized in time, but do not elaborate on such guidance. A clear drawback of this approach 

is its inability to cope with tasks being performed incorrectly or in the wrong temporal 

sequence, since this would lead to an incorrect classification. Also, no temporal rela-

tions, aside from order independent, are considered.  

 Helaoui et al. [8] aim to solve the uncertainty issue by representing activity models 

using log-linear DL, which integrate Description Logics with probabilistic log-linear 

models. Similar to Chen et al., the work proceeds by applying semantic reasoning to 

progressively infer high-level activities; in case of incompatibilities due to (inaccu-

rate/incomplete) sensor observations, the most probable activity is inferred based on 

confidence values of the different activity definitions. Their approach only considers a 

sequential temporal relation, which is represented via an ordinal number associated 

with a subtask; this means that other temporal relations cannot be plugged in without 



9 

significantly restructuring the ontology. Okeyo et al. [16] incorporates composite, in-

terleaving and concurrent task relations based on Allen’s temporal logic, and AR is 

realized using SWRL rules, However, the approach does not support conditional, alter-

native or optional relations, and does not focus on dealing with incorrect actions.   

 We note that our approach is inspired by our work in runtime CPG execution [17, 

18], where current task states in the CPG workflow depends on patient and physician 

actions together with utilized workflow constructs (e.g., decision, pre-conditions).  

7 Conclusions and Future Work 

In this paper, we proposed a novel approach to computerizing complex ADL work-

flows. We presented the SmartAssist Ontology (SAO), which formally defines these 

temporal relations via a set of rules governing the transition between task states. A fine-

grained, knowledge-driven activity recognition process utilizes these state transition 

rules to perform high-level activity recognition. Based on recognized activities, a pro-

active assistance process then realizes guidance features such as keeping the patient 

appraised of their progress and next steps; and correcting the patient’s actions in case 

they are incorrect or performed in the wrong temporal sequence. Compared to other 

knowledge-driven approaches, our system allows defining rich, hierarchical ADL 

workflows utilizing a diverse set of temporal relations, as well as coping with incor-

rectly performed activities – an important feature when dealing with cognitive decline, 

as is common in AAL. 

Future work involves studying how to deal with uncertainty resulting from faulty 

sensor observations, e.g., by utilizing Probabilistic Description Logics [19]. Allowing 

for the personalization of ADL workflows, albeit manually or (semi-)automatically 

based on periodic patterns (e.g., [20]), is an avenue of future work as well. An important 

goal is to combine our knowledge-driven activity recognition approach with behavioral 

self-management, which computerizes behavioral strategies to engage patients to per-

form health activities; including exercise routines, avoiding unhealthy activities (smok-

ing, alcohol abuse, unhealthy diet), and complying with medication regimen. In case of 

non-adherence, as detected using activity recognition, ambient self-management sys-

tems can remind patients of their prescribed regimen or suggested activities, while also 

educating them on importance of compliance. 
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