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From the Semantic Web’s inception, a number of 

concurrent initiatives have given rise to multiple 

segments: large semantic datasets, exposed by query 

endpoints; online Semantic Web documents, in the 

form of RDF files; and semantically annotated web 

content (e.g., using RDFa), semantic sources in their 

own right. In various mobile application scenarios, 

online semantic data has proven to be useful. While 

query endpoints are most commonly exploited, they 

are mainly useful to expose large semantic datasets. 

Alternatively, mobile RDF stores are utilized to query 

local semantic data, but this requires the design-time 

identification and replication of relevant data. 

Instead, we present a mobile query service that 

supports on-the-fly and integrated querying of 

semantic data, originating from a largely unused 

portion of the Semantic Web, comprising online RDF 

files and semantics embedded in annotated webpages. 

To that end, our solution performs dynamic 

identification, retrieval and caching of query-relevant 

semantic data. We explore several data identification 

and caching alternatives, and investigate the utility of 

source metadata in optimizing these tasks. Further, we 

introduce a novel cache replacement strategy, fine-

tuned to the described query dataset, and include 

explicit support for the Open World Assumption. An 

extensive experimental validation evaluates the query 

service and its alternative components. 

Keywords: mobile computing; data integration; data 

indexing; data caching; cache replacement; open 

world assumption 

1. Introduction 

The Semantic Web has grown with leaps and bounds 

over the last decade. Large data sources have been put 

online in semantic format, and made interoperable via 

initiatives such as Linked Data [1]  (e.g., DBPedia, 

LinkedGeoData). In addition, small online RDF files, 

for instance capturing item descriptions (e.g., using 

DCMI) or personal profiles (e.g., using FOAF), also 

constitute a large part of the Semantic Web. Sindice 

[2], a Semantic Web search engine, indexes ca. 708 

million of these online sources. In a parallel evolution, 
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increased efforts are being made to make regular 

(HTML) web content machine-readable as well, 

catalyzed by the commitment of major search engines 

to leverage such annotations for improving search 

results [3]. This evolution has given rise to a new 

Semantic Web segment, comprising web content 

enhanced with semantic annotations (e.g., RDFa, 

microdata). Since most of this annotated content can 

be converted to RDF data (e.g., see [4]), such 

annotated websites are semantic sources in their own 

right. The Web Data Commons initiative [5]  (2013) 

found that ca. 26% of crawled webpages already 

contain semantic annotations.  

Via the Semantic Web, mobile clients gain access to a 

wealth of online, freely available knowledge. Various 

mobile computing domains currently leverage 

semantic data, including augmented reality [6, 7], 

recommender systems [8], location-aware [9, 10] and 

context-aware systems [11, 12], mobile tourism [13] 

and m-Health [14]. Typically, these systems access 

online semantic data via SPARQL query endpoints. 

Since they relieve mobile clients of computationally 

intensive query resolution, query endpoints represent 

an efficient option for mobile clients. On the other 

hand, client-server roundtrips cause delays, and a poor 

or unavailable network connection prevents query 

resolution. Furthermore, setup and maintenance incur 

costs, especially when scalability is desired, and 

requires technical expertise and effort. Therefore, they 

only present an acceptable cost-benefit ratio for large 

RDF datasets.  

Given recent improvements in mobile hardware, 

coupled with the development of mobile query 

engines, an alternative is the local querying of 

semantic web data [12, 15, 16]. However, local 

querying requires the manual, a priori replication of 

relevant data, and gives rise to data freshness issues. 

Moreover, some domains do not allow establishing 

data relevance beforehand; e.g., in context-awareness, 

relevance is determined by the mobile user's current 

context, which is updated continuously and often in 

unforeseeable ways. Due to nearly ubiquitous wireless 



connectivity, opportunities currently exist to bypass 

these drawbacks and dynamically retrieve relevant 

semantic data. 

We present a client-side, general-purpose mobile 

query service, to study the performance and feasibility 

of on-the-fly querying of a mainly untapped portion of 

the Semantic Web, consisting of large amounts of 

RDF files and annotated websites. By supplying 

integrated query access over these sources, the query 

service can resolve distributed queries, referencing 

data from multiple sources. In particular, our solution 

relies on the dynamic identification, retrieval and 

caching of semantic data relevant to posed queries. 

For this purpose, the query service includes two key 

components; 1/ a source identification component, to 

identify query-relevant sources in the online semantic 

dataset, and 2/ a cache component, locally storing data 

for later re-use. The query service relies on an existing 

mobile query engine to locally query retrieved RDF 

data. To reconcile fine-grained data selection with 

reducing data processing overhead, these components 

exploit the semantics of RDF(S)/OWL data.  

Studying the efficiency and workability of such local, 

client-side data collection and query support is 

desirable for a variety of reasons. First, it is an 

infrastructure-less solution, where no single party 

needs to invest in highly scalable server infrastructure 
or cloud subscriptions. Secondly, keeping data and 

posed queries at client-side ensures privacy, e.g., 

especially in context-aware scenarios. Third, by 

collecting data locally, it ensures query capability for 

applications in conditions of poor or unreliable 

network connection. Even with sufficient Internet 

connectivity, local querying avoids client-server 

roundtrips, which potentially decrease performance at 

query time, which is most critical. Finally, it very well 

supports application scenarios where semantic data 

fragments are retrieved by other means than the 

Internet (e.g., via Bluetooth connection, from high 

capacity RFID tags). 

This article builds on earlier work [17], where we 

presented preliminary versions of the main query 

service components. In this article, we present an 

elaborated version of the query service, including 

extensions that tackle previously identified 

shortcomings. These include a novel cache removal 

strategy called Least-Popular-Sources (LPS), tailored 

to our particular situation where cached data originates 

from online data files. Secondly, in order to fully 

support integrated Semantic Web querying, we 

incorporated the Semantic Web Open World 

Assumption (OWA). Our experimental validation 

evaluates the query service using a larger, real-world 

dataset, focusing on the effects of these extensions on 

performance and completeness of query results; while 

at the same time studying boundaries of semantic web 

technology on current mobile devices. 

In the remainder of this article, we first discuss 

challenges and requirements that arise in our particular 

querying scenario, together with suitable solutions. 

Next, an overview of the query service is presented, 

and its general phases are discussed. We continue by 

detailing the major query service components, as well 

as the LPS strategy, and further discuss built-in 

support for the Semantic Web OWA. Subsequently, 

the query service is evaluated via an experimental 

validation. We proceed with a review of the state of 

the art and end with conclusions and future work. 

2. Challenges and requirements 

The goal of our mobile query service is to provide 

transparent, integrated access to a currently untapped 

part of the Semantic Web, comprising online RDF 

files and annotated websites. In this mobile querying 

scenario, a number of issues and challenges arise, 

which we discuss below. 

1. Mobile device restrictions: although mobile devices 

are catching up with desktop and laptop computers, 

they still have limitations regarding processing and 

memory capacity (e.g., Android applies a maximum 

heap depending on the device; currently, for devices 

with 2 – 3 gigabyte of RAM, this limit is typically 

128-192MB per Android 5.1 app). Furthermore, 

battery power is limited, and restricts full and 

continuous utilization of hardware resources. 

2. Large query dataset: due to its scale, it is 

impossible to consider the entire Semantic Web as 

query dataset. Reflecting this, existing approaches to 

integrated querying only focus on a (configured) 

Semantic Web subset. However, our experiments (see 

Section 7) show that querying even moderately sized 

datasets is currently not feasible on mobile platforms 

(e.g., the entire dataset needs to be kept in-memory for 

fast querying).  

3. Dynamic Semantic Web subset and volatile 

semantic sources: typically, mobile applications only 

require access to a specific Semantic Web subset; 

ruling out the need to consider the entire Semantic 

Web (see above). For instance, context-provisioning 

systems [17] require access to semantic context 

sources (e.g., place descriptions); while recommender 

systems [8] require semantic descriptions of items to 

be recommended. Often, these datasets are only 

known at runtime and subject to change, which 



necessitates allowing mobile apps to delineate and 

dynamically extend their relevant Semantic Web 

selection [18]. Furthermore, semantic sources 

themselves may change over time. Depending on the 

usage scenario, changes may be only occasional (e.g., 

product descriptions in e-commerce) or frequent (e.g., 

semantic Internet of Things). In any case, our query 

service needs to be able to cope with a dynamic set of 

potentially evolving sources. 

4. Data captured in online, third-party files: in our 

querying scenario, data items originate from third-

party online files. To gain access to their comprised 

relevant data, such files need to be fully downloaded, 

thus retrieving both relevant and irrelevant data. As 

such, data-retrieval overhead is significantly 

increased. We also note that connectivity 

interruptions, not uncommon in mobile scenarios, will 

result in the query dataset becoming inaccessible.  

Taking into account these observed challenges, we 

formulate the following requirements for efficiently 

querying large sets of online semantic sources: 

1. Minimizing resource usage: a local query service 

should not strain mobile memory and processing 

capacities, nor overly drain the device’s battery 

(challenge 1). Since only a relatively limited amount 

of fast, volatile memory is available (challenge 1), any 

additional (volatile) memory requirements (e.g., to 

store supporting index structures) need to be minimal. 

Ideally, the additional data should fit in volatile 

memory to avoid frequent swapping with persistent 

storage, which unavoidably causes performance loss. 

Secondly, as mentioned, the query service should 

enable mobile applications to delineate and 

dynamically extend or update their relevant Semantic 

Web selection (challenge 3). This means any internal 

data structures need to be updateable in real-time and 

with minimal computational effort, while still 

supporting acceptable query performance. Finally, 

battery consumption should be kept within acceptable 

bounds. For instance, this means reducing battery-

intensive operations as much as possible, such as 

source downloads, which require WiFi or 3/4G radios, 

and large-scale persistent data retrieval.  

2. Minimizing query dataset: querying large datasets 

causes performance problems, especially on mobile 

platforms (challenge 2). Barring extraordinary mobile 

hardware improvements in the near future, this implies 

the query dataset should be kept as small as possible, 

while still allowing complete query results to be 

returned. Reducing the query dataset is also tackled in 

other related approaches, such as query distribution 

[19, 20] and context information systems [12, 21]. For 

instance, query distribution systems typically focus on 

ruling out datasets irrelevant to posed queries. 

3. Minimizing online data downloads: retrieving 

online query data is inherently expensive, both in time 

and battery use (challenge 1), and constrained by 

connectivity (challenge 4). Lack of control over online 

data files prevents more efficient solutions at the 

source side, such as selectively downloading only 

relevant parts, or only re-downloading updated parts 

in case of evolving data sources (challenge 3). As 

such, data retrieval should be avoided where possible. 

For instance, this can already be (partially) achieved 

by reducing the query dataset (req. 2) and thus the 

number of sources to (re-)download. 

In order to meet these requirements, two solutions 

present themselves: 

- Fine-grained identification of relevant sources: by 

identifying data relevant to application queries in a 

fine-grained way, the query dataset can be greatly 

reduced (req. 2), as well as the number of relevant 

sources to download (req. 3). Such identification may 

occur pro-actively, before any queries have been 

posed; or re-actively, for each individual posed query. 

For instance, domain-specific approaches exist [12, 

21] that pro-actively and dynamically locate useful 

Semantic Web data, in this case by correlating the 

information to the user’s context. Since pro-active 

data identification is not always possible (e.g., in case 

relevance is determined by user input), it is not a 

suitable choice for our general-purpose query service. 

Therefore, we choose a re-active approach, 

comparable to query distribution approaches [19, 20]. 

As an important advantage, this approach directly 

supports any scenario encapsulated by application 

queries (e.g., context-awareness, recommendation). 

However, it also requires identification and source 

retrieval tasks to occur during query resolution, 

increasing total resolution times. In any case, efficient 

identification can be supported by indexing source 

data on-the-fly, as the mobile application delineates its 

relevant Semantic Web subset. As indicated by req. 3, 

download overhead can already be mitigated by fine-

grained data selection; as well as by applying the 

second solution, Locally caching data. 

- Locally caching data: by locally caching online data, 

fewer sources need to be (re-)downloaded to serve a 

posed query (req. 3). Using caching, the query 

resolution time is decreased by avoiding source re-

downloads; thus reducing the drawbacks introduced 

by pro-active source selection (see first solution). By 



further allowing cached data to be retrieved with high-

selectivity, the query dataset can be further reduced 

(req. 2). When applying caching, storage footprints are 

kept in check by applying replacement policies (a.k.a. 

removal strategies). In mobile settings, the need for 

caching is reflected in related work [22, 23]. To avoid 

cache invalidity caused by evolving sources, a flexible 

cache validation strategy needs to be deployed, which 

accommodate datasets evolving at different rates and 

avoids unnecessary data (re-)downloads. 

Given our first requirement of minimizing resource 

usage (req. 1), our main goal is to find a good balance 

between the proposed fine-grained data retrieval, 

afforded by effective data indexing and local caching; 

and the memory and computational overhead this 

implies, e.g., resulting from supporting data structures. 

As only a well-balanced solution will provide good 

query resolution times, our research seeks to 

harmonize these counteracting concerns. 

3. General approach 

The query service implements the two proposed 

solutions, namely identifying relevant online sources 

and locally caching data, via two key components. 

Importantly, both components rely on source 

metadata, which includes found predicates and 

resource types, to achieve their task. The source 

identification component, called the Source Index 

Model (SIM), indexes online source metadata from 

online semantic sources, with the goal of enabling 

fine-grained source identification. The cache 

component locally caches downloaded source data and 

has two variant implementations, called Source 

Cache and Meta Cache. Each variant presents a 

different cache organization: Source Cache organizes 

cached data around origin source, while Meta Cache 

arranges the data based on shared source metadata. 

Multiple SIM variants were developed as well, each 

keeping increasing amounts of metadata. By 

developing multiple component variants, we aim to 

study the utility of the aforementioned metadata in 

achieving our goal; namely, reconciling fine-grained 

data retrieval with reduced memory and processing 

overhead (see Section 2). Below, we discuss the 

rationale behind our focus on source metadata.  

Source metadata, including predicates and resource 

types, can be easily and efficiently retrieved from 

semantic sources. Compared to instance-level 

information, as indexed by RDF stores or certain 

query-distribution approaches (see related work, 

Section 8), extracting this metadata is less processing- 

intensive; while much less data needs to be indexed as 

well, decreasing memory usage. At the same time, we 

hypothesize that source metadata still allows for fine-

grained data retrieval, which is confirmed by our 

experiments (see Section 7). 

 

Figure 1. Overview of the components and phases of the mobile query service. 



Clearly, before it can be utilized for source 

identification and caching, such source metadata needs 

to be present in 1/ online sources and 2/ posed queries. 

The real-world dataset gathered for our experimental 

evaluation, extracted from a range of existing online 

sources, confirms that online sources typically specify 

subject/object types to describe contained resources. 

Furthermore, semantic queries often specify concrete 

predicates and constrain subject/object types of query 

variables. Both these observations are reflected in the 

related domain of semantic query distribution, where 

approaches index RDF predicates [19, 24] and types 

[20] to identify query-relevant datasets.  

However, indexing any kind of RDF data inevitably 

raises problems resulting from the Semantic Web’s 

Open World Assumption (OWA) and its inherently 

distributed nature. Due to its lack of negation-as-

failure, the OWA implies that no single source is self-

contained or complete; other sources can thus specify 

additional information for each resource. In our case, 

this means multiple different resource types can be 

specified across different, distributed online sources, 

potentially leading to inconsistent indexed metadata. 

We elaborate on this issue in Section 6.  

Figure 1 shows an overview of the mobile query 

service components and phases. The query service 

relies on an existing mobile query engine (e.g., 

AndroJena [25], RDF On The Go [26]) to locally 

query the downloaded semantic data. Below, we 

discuss each phase in more detail. 

The Source Indexing phase is triggered when the 

client (i.e., mobile app utilizing the query service) 

passes the location of an a priori known or newly 

discovered online source (a.1), allowing the app to 

outline its relevant portion of the Semantic Web. For 

applications where the required dataset is known 

beforehand, this may occur in bulk [8] whereby 

updates may be issued later on; in other cases, this will 

happen gradually and in real-time [17]. In our 

experimental evaluation (see Section 7), the SCOUT 

mobile context-provisioning framework [11] acts as 

client, passing online sources describing the user’s 

physical environment as they are discovered. Other 

client apps can also be envisioned, including any type 

of context- or environment-aware application (e.g., 

mobile tourism applications, such as restaurant 

finders, museum guides, city tour apps, etc.; m-

commerce application, such as geo-fenced coupon 

apps, shopping comparison apps, real-estate apps, 

etc.), and other applications scenarios (e.g., mobile 

recommender systems, such as music or movie 

recommenders; aggregator apps, such as news or 

search aggregators; or social-networking-based 

applications, such as dating or travel apps). Depending 

on the concrete scenario, the delineation and dynamic 

expansion of the relevant dataset may also come in 

different forms: discoverable (i.e., in context-aware 

scenarios), computable (i.e., as a result of an on the fly 

crawling process), or previously known. 

Upon receiving an online source reference (a.1), the 

Source Handler contacts the Source Downloader to 

retrieve the source data (a.2). In addition to online 

RDF files, the Source Downloader also supports 

semantically annotated websites, automatically 

extracting their annotations as RDF triples (currently, 

RDFa is supported). The retrieved source data is then 

passed to the Source Analyzer (a.3), which extracts 

the required source metadata, including predicates and 

resource types. The Source Analyzer can optionally 

employ the Ontology Manager to infer additional 

metadata, based on axioms from well-known 

ontologies (a.4). After extraction, the source metadata 

is passed to the Source Index Model (SIM) for 

indexing (a.5), and the downloaded source data is 

passed to the cache component for storage (a.6). 

The Data Query phase commences when the client 

poses a query (b.1). The given query is first analyzed 

by the Query Analyzer (b.2), which extracts query 

metadata as search constraints. This query metadata 

reflects the extracted source metadata, and comprises 

concrete predicates and type constraints. As before, 

the Query Analyzer may utilize the Ontology Manager 

to infer additional query metadata (b.3). The Query 

Handler then passes the extracted search constraints to 

the SIM, which returns references to online sources 

containing relevant data (b.4). Given the identified 

source references (and extracted search constraints1), 

the cache component is contacted (b.5), returning 

query-relevant source data locally available in the 

cache. Any sources not found in the cache, due to 

applied removal strategies (in case storage was full), 

are re-downloaded by the Source Downloader (b.6).  

Afterwards, an existing mobile query engine executes 

the query (b.7) over the collected query dataset, after 

which the query results are returned to the client (b.8). 

At the end of the phase, the cache is updated with the 

(re-)downloaded source data (b.9).  

As mentioned, the Source Indexing and Data Query 

phases are respectively triggered when indexing an 

online source and executing an application query. In 

                                                           
1 Meta Cache relies on the search constraints for retrieving 

cached data (see Section 5.1.2). 

 



case new sources are discovered dynamically, they are 

thus likely to occur intermittently at runtime. The 

query service is implemented for the Android platform 

(version 4.1.2). The AndroJena library supplies the 

mobile query engine, though any other mobile query 

engine can be used. 

Below, we elaborate on the concrete implementations 

of our solutions, namely identifying online sources 

and caching source data. 

4. Identifying relevant online sources 

By indexing online source data, query-relevant 

sources can be identified during querying. In 

particular, the Source Index Model (SIM) focuses on 

source metadata, including predicates and resource 

types, resulting in a compact index that is quick to 

update and maintain, while still ensuring high source 

selectivity. Given analogous metadata extracted from 

queries, the SIM utilizes the indexed metadata to 

identify query-relevant sources in a fine-grained way.  

To validate the effectiveness of source metadata in 

reconciling data selectivity and overhead, we 

developed 3 SIM variants, each keeping increasing 

amounts of metadata: SIM1, only storing predicates, 

SIM2, keeping predicates and subject types, and 

SIM3, keeping predicates, subject and object types. 

Below, we shortly elaborate on the index structure 

employed by the SIM. Then, we discuss the source 

and query analysis and source identification processes. 

4.1 Source Index Model 

The Source Index Model is implemented using a 

multi-level index; a type of index used traditionally in 

databases, but in this case specifically tailored for 

source identification based on source meta-data. In the 

related work section (see Section 8), we discuss other 

indexing structures employed by related approaches. 

Each index level indexes on a particular metadata part 

(i.e., predicates, subject or object type), and keeps 

maps that connect metadata parts occuring together in 

source triples. In particular, the first-level map indexes 

on predicates, whereby each entry links to a second-

level map keeping subject types. Each subject type 

further links to a map keeping object types, each of 

which finally points to a list of URLs. Each linked 

combination of predicate, subject and object type (i.e., 

path through the multi-level index) indicates that the 

particular metadata combination occur together in one 

or more triples from the indicated sources. Given that 

sources may contain triples without types, an <empty> 

map entry may be added as well. For instance, a 

predicate entry linking to an <empty> subject type and 

<empty> object type entry indicates the predicate was 

found without subject/object types in the indicated 

sources.  

To reduce the size of the SIM, dictionary encoding is 

applied (similar to RDF stores [27, 28]). This 

encoding process is fine-tuned towards RDF terms, 

and maps namespaces (indicating a set of related 

resources) to an integer identifier, while local names 

(indicating the concept or item) are kept as character 

arrays. We found this resulted in the largest size 

reduction, as namespaces are repeated across data 

sources much more often than the local names. 

4.2 Source Analysis 

The Source Analyzer extracts metadata for each 

retrieved online source, including predicates, subject 

and object types. Initially, this extraction was realized 

via predefined SPARQL extraction queries [17, 29]. 

However, this led to huge processing overheads when 

dealing with real-world sources, which contained large 

amounts of distinct metadata.  We therefore optimized 

the metadata extraction process by dynamically 

parsing RDF files in N-TRIPLE format (which are 

straightforward to parse), processing the RDF line-

per-line and returning new RDF metadata statements 

as requested by the Source Analyzer. This way, we 

avoid an expensive RDF graph creation (performance 

and memory-wise) and querying step. This resulted in 

an average performance gain of factor 10. 

4.3 Query Analysis 

The Query Analyzer analyzes each triple pattern in a 

query’s WHERE, OPTIONAL and UNION clauses to 

retrieve query metadata, including predicates and 

resource types, which can then be matched to indexed 

source metadata. FILTER clauses are further scanned 

for functions indicating equivalence between variables 

and resources (i.e., sameTerm function), which may 

result in additional concrete predicates and types.  

SELECT ?place 

WHERE { 

?person rdf:type foaf:Person . 

?person foaf:based_near ?place . 

?place rdf:type rest:Restaurant . 

} 

Code Listing 1. Example SPARQL query and extracted 

triple patterns 

Code Listing 1 shows an example SPARQL query, 

where the underlined triple patterns supply type 

constraints for the triple pattern in bold. The following 

query metadata combination, or search constraint, is 

extracted for Code Listing 1: foaf:based_near – 

foaf:Person – rest:Restaurant. 



The Query Analyzer utilizes the SPARQL Parser 

library [30] to parse SPARQL queries, and then visits 

the parsed Abstract Syntax Tree (AST) to extract the 

search constraints. 

4.3 Source Identification Process 

To identify query-relevant sources, search contraints 

extracted from queries are matched with metadata 

from online sources. In particular, the SIM follows 

each individual search constraint as a path through the 

multi-level index. Respectively using the predicate, 

subject and object type as keys, the predicate index 

returns a subject type index (predicate key), which in 

turn leads to an object type index (subject type key). 

Finally, this latter index returns a list of source URLs 

(object type key), each adhering to the given search 

constraint. By performing this step for each separate 

search constraint, as opposed to the entire query, 

sources can be identified for queries that are not 

solvable by any single source, but require a 

combination of sources; thus supplying full integrated 

query access across online sources. 

In case subject/object variables of a triple pattern have 

multiple type restrictions (e.g., foaf:Person, 

dcmi:Agent), a data source is only relevant for the 

triple pattern if it specifies all given types for that 

variable. To realize this, separate search constraints 

are extracted for each type, and an index search is 

performed for each constraint. Afterwards, the 

intersection of the found sources is taken, ensuring the 

sources each adhere to the extracted constraints. 

Similar to sources, some queries may lack certain 

metadata, including types and predicates. In this case, 

missing metadata indicates no constraint is given on 

the missing metadata part(s) (e.g., subject type). This  

means the search at the particular index level (e.g., 

subject type index) is unconstrained, and all entries at 

the particular index level need to be followed (e.g., 

subject type index). Afterwards, the union of all found 

sources is taken, denoting all sources that fulfil the 

(partial) constraint. Note that the <empty> entry, 

indicating a lack of particular source metadata (e.g., 

subject type), only matches if the search is 

unconstrained at that level.  

By considering each search constraint separately, as 

well as supporting both missing source and query 

metadata, all sources containing query-relevant data 

are returned. However, full completeness can only be 

guaranteed if the Open World Assumption is also 

considered. We revisit this issue in Section 6. 

 

5. Caching source data 

Locally caching source data serves to reduce the 

number of source (re-)downloads required to serve a 

posed query. Importantly, cached data should be 

retrieved with high selectivity to keep the query 

dataset small, while additional data structures (e.g., 

indices) should only take up limited memory space 

and be quick to update and maintain. To study the 

extent to which source metadata can balance these two 

concerns, we consider multiple component variants: 

Source Cache, which arranges the cache according to 

origin source; and Meta Cache, organizing cached 

data according to shared metadata. In Section 5.1, we 

elaborate on both cache organizations, and weigh their 

respective advantages and drawbacks. 

To manage the occupied memory and storage space, 

replacement policies (or removal strategies) identify 

data to be moved to persistent storage or removed 

entirely. We discuss suitable removal strategies, and 

detail a novel removal strategy called Least-Popular-

Sources, in Section 5.2. Finally, a cache validity 

strategy is applied to ensure the freshness of the cache 

(Section 5.3). Both removal and cache validity 

strategies are tailored to our particular setting, where 

cached data originates from online data files.  

5.1 Cache organizations 

A cache can be organized in different ways, 

influencing the fine-graininess of cached data 

retrieval, as well as the maintenance costs and 

memory overhead. Cached data is indexed, stored and 

retrieved per unit of data called the cache unit, 

whereby the content of the unit depends on the 

particular cache organization. 

5.1.1 Source Cache 

In Source Cache, an individual cache unit contains all 

data from a particular online source; in other words, 

data is indexed, stored and retrieved per origin source. 

This is a natural organization in our setting, where 

data originates from small online sources. A search 

index (implemented as a hash table) is kept on source 

URLs, each of which uniquely identifies a cache unit. 

To obtain the URLs of cached, query-relevant sources, 

the Source Cache is deployed in combination with the 

SIM (see Section 4).  

Since only one index is kept with a relatively small 

amount of entries, this cache organization results in 

only minimal memory overhead, while the SIM 

memory impact is limited as well. Cache creation and 

updating is also efficient, since each downloaded 

source is directly stored as a cache unit. On the other 



hand, Source Cache does not support fine-grained data 

retrieval, since a retrieved cache unit comprises the 

entire source instead of only its relevant triples. Our 

experimental evaluation (Section 7) shows that this 

leads to high cache retrieval overheads during query 

resolution. As indicated by req. 3, Minimizing online 

data downloads, course-grained retrieval is 

unavoidable when dealing with online sources. 

However, this can be improved upon when dealing 

with local data, as shown by Meta Cache. 

5.1.2 Meta Cache 

In the Meta Cache organization, a single cache unit 

comprises all triples sharing the same metadata 

combination (i.e., predicate and subject, object type), 

irrespective or their origin source. By keeping search 

indices on predicates, subject and object types, 

relevant cache units can be quickly identified, given a 

particular query metadata combination.  

In this case, a retrieved cache unit comprises only 

triples matching the query’s search constraints, 

resulting in much more fine-grained retrieval. 

However, this comes with additional memory and 

processing overhead. Firstly, the cache update time is 

increased, since metadata from each source triple 

needs to be extracted, and added to three separate 

indices. Secondly, storing triples from a single online 

source potentially requires creating or updating 

multiple cache units, depending on their metadata. 

Regarding memory usage, three indices (implemented 

using hashtables) are kept with considerably more 

entries compared to Source Cache, since the number 

of distinct predicates and types usually exceeds the 

number of source URLs. To enable validity checking, 

the origin URL of each cached triple also needs to be 

kept (see Section 5.3). In an effort to reduce memory 

and storage space, type statements (i.e., with predicate 

rdf:type) are not stored, but automatically generated 

based on the metadata associated with retrieved cache 

units2, and then inserted in the final query dataset. At 

the same time, we note that due to its focus on 

schema-level information, Meta Cache still has a 

much lower memory and update overhead compared 

to other indexing approaches (see Section 8).  

Additionally, our experimental evaluation  shows that 

this overhead is still reasonable, especially when 

considering the resulting improvement in query 

resolution performance. 

                                                           
2 E.g., for each triple “X Y Z .” in cache unit with metadata 

<pred1, subjType1>, the type statement “X rdf:type 

subjType1” is generated. 

In addition, Meta Cache keeps information on 

“missing” cached data, previously removed by cache 

removal strategies (see next section). In particular, it 

keeps the metadata combination associated with the 

removed data, together with references to their origin 

sources; and indexes this information using the 

aforementioned indices. Consequently, a single cache 

lookup may return relevant cached data as well as 

references to online sources that need to be re-

downloaded. By integrating this functionality in the 

Meta Cache, we rule out the need for a separate source 

identification component, avoiding its associated 

overhead. As a result, the Meta Cache implements 

both online source identification and local caching. 

Finally, we note that, analogous to the SIM, both 

Source and Meta cache apply dictionary encoding to 

reduce memory and storage space. 

5.2 Removal Strategy 

In case of limited volatile and persistent storage, a 

removal strategy (or replacement policy) is applied to 

identify data to be moved from volatile to persistent 

storage or removed entirely, whenever volatile or 

persistent memory becomes full, respectively. For this 

purpose, well-known strategies such as Least-

Recently-Used (LRU) or Least-Frequently-Used 

(LFU) may be employed. A number of domain-

specific removal strategies exist as well, which are 

discussed in our related work section (see Section 8). 

However, such existing strategies have the potential to 

cause major performance issues for Meta Cache. This 

is a result of the specific organization of Meta Cache, 

which groups source data based on shared metadata 

instead of origin source. As a result, cache units likely 

contain data originating from multiple sources. 

Whenever a removed cache unit is referenced during 

query resolution (i.e., a cache miss), this means all 

sources containing the missing metadata combination 

need to be fully re-downloaded, and the relevant data 

items extracted. This issue has its roots in our 

particular setting, where data is captured in online data 

files (see Section 2), and will have negative effects for 

any cache organization different from origin source. 

Previously, we found that this incurs a serious 

performance overhead during query resolution [17]. 

To allow for efficient query resolution when utilizing 

Meta Cache, we need to reduce the occurrence of this 

problem. For this purpose, we present a novel cache 

removal strategy called Least Popular Sources (LPS), 

which we discuss below. 

5.2.1 Least-Popular-Sources 



Instead of removing single cache units, the LPS 

strategy removes all data originating from a particular 

source, potentially across cache units3. By removing 

data on a per-source level, cache misses resulting from 

a single removal only require a single source to be re-

downloaded, instead of multiple sources. On the other 

hand, the probability of cache misses increases as 

well, as one source removal influences all cache units 

with the source’s data. This is illustrated in Figure 2; 

by removing source A, any cache miss only incurs one 

source re-download; although there is now a 3/4 

chance that accessing a cache unit incurs a cache miss.  

Consequently, the goal of LPS is to balance 1/ the 

number of source re-downloads and 2/ the probability 

of cache misses. To that end, LPS considers the 

“popularity” of cached sources when identifying 

sources to be stored persistently or removed. As 

explained below, both the popularity of its source data 

and metadata is considered. 

The first factor, source-data popularity, refers to the 

degree to which the source’s data is spread across the 

cache, indicated by the number of cache units 

containing the source’s data (i.e., the source data’s 

“popularity”). As such, it marks the amount of cache 

units that will be affected by removing the source’s 

data. By reducing the amount of cache units with 

missing data, we can decrease the probability of cache 

misses later on. In Figure 2, source A has the highest 

value for this factor, since its data is spread across 3 

cache units. 

The second factor, source-metadata popularity, 

reflects the number of other online sources that 

contain the source’s metadata (i.e., the source 

metadata’s “popularity”). Since cache units group data 

sharing the same metadata, origin sources 

participating in the same cache unit share (at least) this 

metadata. In case a cache unit has many origin 

sources, it will thus contribute to a high extent to the 

source-metadata popularity of each associated source. 

Applying this factor reduces the chance that many of 

these sources will be removed; thereby decreasing the 

potential number of source re-downloads on a cache 

miss. This is illustrated in Figure 2, where sources B, 

C, D and E each have three other sources keeping the 

same metadata (indicated by their participation in 

cache unit 1).  As a result, these sources have a large 

value for this factor, reducing the likelihood that many 

of them will be removed. This means that a cache 

miss, resulting from accessing cache unit 1, will lead 

to only a minimal number of source re-downloads. 

                                                           
3 Other sources’ data in these cache units is hereby retained. 

 

Figure 2. Example application of LPS. 

In practice, these two factors allow us to cope with 

sources of different sizes. Small sources will typically 

be spread across less cache units (as they typically 

contain less distinct combinations of metadata), and 

thus have a smaller value for the source-data 

popularity factor. Due to their smaller size, a 

comparably large number of them also needs to be 

removed to clear the same amount of storage space 

(compared to when removing a larger source). For 

instance, in Figure 2, clearing storage space could 

involve removing the (small) sources C, D and E, 

resulting in 3 source re-downloads when accessing 

cache unit 1. However, since this cache unit contains a 

large amount of sources, the sources’ associated value 

for the source-metadata factor is larger as well. This 

reduces the likelihood that many of these sources will 

be removed; thus decreasing the probability of many 

source re-downloads on a cache miss. 

As a final factor, LPS can take the source’s download 

cost into account, whereby sources that have long 

download times are less likely to be removed. Formula 

1 shows the removal value calculation for source s, 

where f1 stands for source-data popularity, f2 for 

source-metadata popularity, and f3 for download cost 

(in seconds)4. Due to the nature of f1 and f2, this 

calculation is performed each time cache units are 

created, updated or removed. Different factor weights 

may be set, respectively represented by  α, β and γ. In 

our experimental section, we tested different weights 

to find an optimal balance between these factors in our 

dataset (see Section 7). 

LPS(s) = αf1 + βf2 + γf3 

Formula 1. LSP removal value calculation. 

We note that LPS was specifically designed to cope 

with the difficulties of cache removal in settings 

                                                           
4 A higher result value means the source is less likely to be 

removed. 



where data originates from online files. As such, it 

does not consider any particular locality of reference, 

as is typically the case for removal strategies (e.g., 

LRU, or Furthest-Away-Removal (FAR) [23]). Since 

our query service is general-purpose, it is also not 

possible to make a priori assumptions on likeliness of 

referral. Finally, we also note that LPS makes 

removals more complex and costly, compared to 

regular removal strategies. In our experimental 

evaluation (see Section 7), we investigate how these 

overheads weigh against the potential advantages. 

In the section below, we elaborate on implications of 

LPS on cache architecture. 

5.2.2 Decoupling retrieval, storage, removal units 

Until now, we indicated that cached data is retrieved, 

stored and removed per cache unit (see Section 5.1). 

To support removal strategies such as LPS, where data 

is removed via a different unit (e.g., origin source), we 

need to further distinguish between a retrieval, 

removal and storage unit. A retrieval unit keeps 

(pointers to) the data retrieved when accessing the 

cache, while a removal unit keeps (pointers to) the 

data that is removed or persistently stored due to a 

memory management operation. A storage unit 

contains the actual cached data (in-memory/  

persistent), to which retrieval and removal units point. 

In other words, retrieval and storage units are indexes 

over the actual data, stored as storage units. This 

allows both efficient retrieval of query data, as well as 

efficient removal due to cache maintenance. 

In Meta Cache, the retrieval unit points to all data 

sharing the same metadata, and thus corresponds to 

the original notion of a “cache unit”. When applying 

the LPS strategy, the removal unit will point to all data 

originating from a particular source. To accommodate 

this, the storage unit needs to be more fine-grained, 

keeping data from a particular source that share the 

same metadata. This allows removal units to keep 

pointers to units only keeping their associated source 

data; and retrieval units towards units only storing the 

data matching their metadata combination. A memory 

management operation can thus selectively remove 

(from volatile/persistent memory) only the data 

originating from a particular online source5; while all 

data adhering to a given metadata combination can 

still be retrieved.  

Finally, we note that when moving a storage unit from 

volatile to persistent storage, multiple options exist to 

                                                           
5 Removal of storage units is hereby propagated to their 

respective retrieval units, to update their internal pointers. 

store the source data on the file system6. We found 

that the straightforward option, namely saving each 

storage unit to a single file, leads to an impractically 

large number of files (i.e., # distinct metadata 

combinations X # origin sources). Instead, grouping 

the persistent data per removal or retrieval unit 

reduces the number of data files, and has other 

advantages as well. Grouping per removal unit 

optimizes memory management (i.e., storage, 

removal), since only a single file is affected. By 

grouping per retrieval unit, data retrieval is optimized, 

since a single retrieval only requires accessing one 

data file. In our experimental section (see Section 7), 

we discuss on the effects of these data grouping 

methods on performance. 

5.3 Implementation 

In this section, we discuss implementation issues 

related to the cache components. 

- Representing in-memory source data: when 

assembling the final dataset for querying, an 

AndroJena RDF graph needs to be created on which 

the query is executed. Loading this query graph with 

separate data strings from each retrieved cache unit 

incurs a performance overhead. This was especially 

the case for Source Cache, with its coarse-grained 

cached data retrieval. Therefore, in Source Cache, 

each in-memory cache unit keeps its data in an 

AndroJena RDF graph. By optimizing the AndroJena 

library to efficiently combine AndroJena graphs, the 

final data assembly became much more efficient.  

On the other hand, since the number of cache units in 

Meta Cache is comparably much higher (due to the 

higher amount of distinct metadata combinations), we 

found that keeping separate AndroJena graphs per 

cache unit caused too much memory overhead7. 

Therefore, cache units in Meta Cache still keep their 

data as a string.  

- Storage management: in order to manage volatile 

and persistent storage space, which involves 

persistently storing or removing cached data when 

storage limits are exceeded, cached data sizes need to 

be accurately measured. Since no effective way to 

estimate runtime memory usage is available in 

Android, this is currently done by estimating source 

data sizes, which does not include implementation-

specific data structures (e.g., Java object overheads). 

In our experiments, we compare the accuracy of this 

                                                           
6 Data is stored directly on the file system instead of a 

database, which would introduce unnecessary overhead. 
7 E.g., due to the internal indices used by AndroJena (see 

related work). 



estimation with the actual memory usage, measured 

by analyzing Java heap dumps8.   

5.3 Cache validity 

Various invalidation strategies exist to detect invalid, 

out-of-date information in client-server systems and 

mobile scenarios (see related work, Section 8). 

However, such strategies cannot be applied in our 

setting, where cached data does not originate from 

dedicated servers but from online files, stored on 

multiple, general-purpose web servers.  

To accommodate our setting, we re-use web servers’ 

existing functionality by relying on the cache support 

provided by the HTTP protocol (e.g., also used by 

proxy caches). For each retrieved source, the last 

download time and expiration time (indicated by the 

“Expires” header field), if available, is kept. If no 

expiration time is given, a configurable maximum life 

span is assigned to the source; which depends on the 

volatility of the dataset, and data freshness 

requirements of the application. Based on these two 

criteria, the system may also be configured to let the 

max. life span take precedence over the source expiry 

time, meaning the same life span will be assigned to 

all sources (e.g., in case data freshness is less 

important, or online sources are expected to evolve 

very frequently regardless of expiry times). To support 

timely validity checking, an ordered list of life spans / 

expiry times is kept by the system. In case the 

currently smallest time span has been exceeded, a 

background process checks the source’s validity. For 

optimisation purposes, in case a number of sequential 

time spans are sufficiently similar, they are grouped to 

invoke the background process only once (cfr. 

Android AlarmManager API9). Checking source 

validity involves sending a conditional GET request to 

the source’s web server, with its last download time 

filled into the “Last-Modified-Since” header field. If 

no change occurred, a 304 Not Modified header is 

returned, yielding only minimal data transfer 

overhead. Else, the updated source data is returned 

and used to update the cache.  

6. The Semantic Web as an Distributed System, 

supporting the Open World Assumption 

The vision of the Semantic Web is that of an open, 

interlinked web of machine-readable data, where 

semantic sources may publish information on anything 

identifiable by a resource URI. To that end, Semantic 

                                                           
8 Due to their overhead, it is not possible to use heap dump 

analysis tools at runtime. 
9 https://developer.android.com/training/scheduling/alarms.html 

Web technology implements the Open World 

Assumption (OWA) which, contrary to the Closed 

World Assumption, states that no assumptions can be 

made on non-explicitly stated knowledge. As such, no 

data source may be assumed to be comprehensive and 

self-contained, and due to the distributed nature of the 

Semantic Web, additional information on resources, 

missing from the particular source, may be found in 

any other online source. Data sources are thus 

transformed from closed data silos to collaborating 

parties – each contributing their own data to the online 

Semantic Web knowledge base.  

By supporting the distributed nature of the Semantic 

Web and the OWA assumption, our query service can 

provide fully integrated access to the Semantic Web. 

Supplying this support has two important 

consequences, which we discuss next. 

6.1  Distributed type constraints 

As mentioned, the OWA implies semantic sources are 

not self-contained, which also means that their 

comprised RDF resources may be described by other 

online sources. Regarding the query service, this 

means that new sources may specify different types 

for already processed data; possibly leading to 

previously indexed source metadata to become out-of-

date. Consequently, resource types should ideally be 

tracked across online sources, whereby appropriate 

action is taken when incomplete source metadata is 

found. In doing so, we guarantee that all relevant 

query results are returned, for any online data 

composition. We call this process type mediation.  

In particular, type mediation is applied in two cases; 

when new sources specify additional types for 

previously found resources, and when new sources 

specify less types than known for the comprised 

resources. In the former case, internal indices should 

be updated; and in the latter case, the extracted source 

metadata should be extended with the missing types. 

To keep track of resource types across sources, we 

rely on a resource index (implemented as a hashtable) 

linking found resources to their known types.  

We note that online sources cannot be directly updated 

with the missing types, as data in our setting is 

captured in online files not under our control. As such, 

type mediation needs to be applied on new sources 

during the Source Indexing phase; as well as during 

the Data Query phase, on re-downloaded sources (due 

to cache misses) on which type mediation had already 

been applied. We finally note that, due to the different 

internal structures in the SIM and cache components, 

the type mediation process and resource index differ 



for these components and their variants. For Meta 

Cache, we note that type mediation often involves 

loading previously cached data into memory, to 

update their associated metadata. As such, type 

mediation process will have a large impact on removal 

times, as the loaded cache units need to be moved 

back to persistent storage afterwards. In the 

experimental section (see Section 7), we study the 

effects of each type mediation process and index on 

performance, memory and data access. 

Type mediation is a resource-intensive process, given 

the resource index and need for updating internal 

indices. Consequently, it contradicts req. 1, 

Minimizing resource usage. At the same time, we 

point out this resource index still consumes less 

memory compared to e.g., RDF stores, which often 

utilize multiple indexes to support fast querying (e.g., 

3 for Androjena; and 6 for YARS [28] and HexaStore 

[27]). We also note that in some cases, type mediation 

may be safely disabled. By analyzing the online 

dataset, the existence of inconsistent typing can be 

ruled out. Alternatively, when there is control over the 

online sources (e.g., in closed-world systems), the 

source data can be automatically supplemented with 

missing resource types, ensuring consistent typing. 

Some applications also prefer fast, partial results over 

guaranteed completeness, especially in a Web setting 

(e.g., [31, 32]). Finally, in the real-world dataset used 

in our experiments, we observed that only a limited 

number of typing issues occurred (see Section 7).  

It can be noted that related approaches integrating 

Semantic Web data suffer this problem, yet to the best 

of our knowledge, they do not consider it. For 

instance, the SemWIQ [20] and DARQ [19] query 

distribution systems do not update indexed resource 

types based on types found in other sources. As a 

result, related state of the art corresponds to the case 

where type mediation is disabled in our query service. 

6.2 Inferring new types 

A second important consequence of the Semantic Web 

OWA is that it allows new statements to be inferred, 

based on logical axioms specified in RDF schema 

definitions or OWL ontologies. For example, an 

ontology may contain property domain/range 

restrictions, which constrain the types of related 

subject/object resources. In case these type constraints 

are not explicitly stated in the RDF data, they may be 

inferred. This process is called type inferencing, and is 

supported by most RDF stores. Typically, these stores 

allow enabling/disabling inferencing to suit 

application needs and improve performance. 

Analogously, our query service supports type 

inferencing and allows to enable/disable it. When 

enabled, type inferencing is applied during the Source 

Indexing phase to enrich extracted source metadata; 

and during the Data Query phase, to enhance the 

extracted search constraints of posed queries.  

For this purpose, the Source Indexing phase is 

extended with the Ontology Manager (see Figure 1). 

This component provides inferencing support based 

on axioms from online schema definitions and 

ontologies. The Source Analyzer, responsible for 

extracting source metadata, employs the Ontology 

Manager to retrieve each found predicate’s 

domain/range types, optionally including their 

subtypes. If encountered, these inferred types are 

added to the extracted source metadata10, allowing 

more query-relevant data to be identified. Consider the 

following RDF snippet in Code 2 (namespaces 

omitted for brevity): 

  vub:thinker_in_all_states 

    rdfs:label “Thinker in all states”. 

  vub:thinker_in_all_states     

    geo:xyCoordinates  

    ”50.82242202758789,4.393936634063721”. 

Code 2. Example RDF snippet to illustrate type inferencing 

during Source Indexing. 

The Source Analyzer contacts the Ontology Manager 

to obtain the domain type restriction of the 

geo:xyCoordinates predicate (specified in the 

GeoFeatures [33] ontology), namely 

geo:SpatialEntity; and subsequently extends the 

source metadata with this inferred type. Whenever a 

query is posed requesting all labels of 

geo:SpatialEntity resources, the 

vub:thinker_in_all_states resource will now be 

returned as a result; which would not have been the 

case without type inferencing.  

During the Data Query phase, the Query Analyzer 

component, responsible for extracting query search 

constraints, leverages the same ontological 

knowledge. By utilizing the Ontology Manager, the 

Query Analyzer obtains each concrete predicate’s 

domain and range types (possibly accompanied by 

their subtypes), and uses them to enhance the search 

constraints. In doing so, more irrelevant source data 

can be ruled out. Code 3 shows a query containing two 

triple patterns (namespaces omitted for brevity): 

  ?restaurant lgd:cuisine ?cuisine . 

  ?restaurant rdfs:label ?label . 

                                                           
10 If inferred types are already materialized in the online 

dataset, type inferencing in this phase can be skipped. 



Code 3. Example query to illustrate type inferencing during 

the Data Query phase. 

Using the Ontology Manager, the Query Analyzer 

retrieves the domain type restriction of the lgd:cuisine 

predicate (as specified in the LGD ontology [34]), 

namely lgd:Restaurant, and adds it as a subject type to 

the two extracted search constraints. Since no type 

constraints were explicitly given, and rdfs:label is a 

much-occurring predicate, adding the extra inferenced 

lgd:Restaurant type has to potential to drastically 

improve selectivity.  

To implement the two lightweight inferencing tasks 

mentioned above, we apply two mechanisms:  

 To support retrieving all super types of a given 

type, we keep a hierarchy of Java objects, 

combined with a (hash) map linking type URIs to 

objects in the hierarchy; 

 To retrieve all domain/range types of a given 

predicate, we keep an additional (hash) multimap 

linking predicates to their domain/range types. 

Per source analysis, we additionally keep a cache of 

inferred domains/ranges and supertypes, as these are 

typically re-used inside a source. We found that these 

two straightforward mechanisms, combined with a 

temporary cache, greatly optimizate performance; 

compared to issuing queries on-the-fly on the ontology 

RDF graph to obtain the same information. 

We note that, as for type mediation, type inferencing 

needs to be re-applied on re-downloaded sources 

during the Data Query phase; as it was not possible to 

update the online sources with the inferred types. 

Further, due to the increased size of the cache units, 

we note that removal times will be influenced as well. 

7. Experimental evaluation 

This section presents an elaborate experimental 

evaluation of the query service and its components. In 

these experiments, we apply a context-aware scenario, 

where the SCOUT mobile context-provisioning 

framework [11] plays the role of client. We extracted 

real-world semantic data sources from existing 

datasets (e.g., LinkedGeoData, DBPedia) to serve as 

an online experiment dataset.  

These experiments focus on the difference aspects of 

the query service, and investigate: 

- The utility of different amounts of source metadata 

in balancing fine-graininess of data retrieval with 

memory and processing requirements . This is 

studied for online source identification (SIM; 

Section 7.2) and local caching (Section 7.3). 

- The impact of the novel Least-Popular-Sources 

strategy, with different configurations, on cache 

composition and query performance (section 7.4); 

- The Open World Assumption features, namely 

type inferencing and mediation, and their positive 

effects on data access vs. memory and 

performance penalties (section 7.5). 

All resources related to the experiments, including 

dataset and queries, can be found on [35] (queries are 

also included in Appendix A). Before going into detail 

on the experiments, we first describe the experiment 

setup and methodology below. 

7.1 Experiment setup 

This section outlines the setup for our experiments. 

7.1.1 Device 

The experiments were performed on an LG Nexus 5 

(model LG-D820), with 2.26 GHz Quad-Core 

Processor, 2Gb RAM and 32Gb storage. We note that 

this device also runs the latest Android OS version 

(Android 5.1.1, Lollipop). Android apps obtain a 

maximum Java heap space of 192Mb. 

7.1.2 Dataset 

The semantic dataset used in the experiments consists 

of 5000 data sources, and has a total size of 526Mb; 

with an average size of ca. 107Kb, median size of 

13Kb and standard deviation of 322Kb. The data 

sources were assumed not to change during the 

experiments, and were distributed across four different 

remote web servers. 

The sources were extracted from 8 online datasets, 

some referenced on the Billion Triples Challenge 

(BTC) 2012 Dataset webpage [36]. The extracted data 

contain information on people (Timbl), places and 

things (Freebase, DBPedia, DataHub), shopping items 

(BestBuy RDF extract), geographical entities 

(LinkedGeoData, Geonames) and online news 

(NYTimes). An individual source groups data on a 

specific RDF resource; possibly obtained from 

multiple remote datasets and linked together using 

interlinks (released by the Linked Data initiative). 

Overall, the dataset references 191 ontologies.  

Due to its re-use of existing online data, our 

experiment dataset can be considered as representative 

of real-world use cases. At the same time however, we 

note that different dataset compositions will influence 

certain results, such as for LPS (see Section 7.4.2) and 

type mediation  (see Section 7.5.2.2). A systematic 

study of the query service using multiple, distinct 

dataset compositions is considered future work. 



7.1.3 Query scenario 

Our experimental evaluation is applied in a context-

aware scenario, using the SCOUT context-aware 

application framework [11] as a client. As the user is 

moving around, SCOUT continuously discovers new 

physical entities in the user’s vicinity (e.g., using a 

built-in mobile RFID reader), and extracts references 

to online semantic sources describing the particular 

entity (e.g., by reading URLs from RFID tags). To 

allow integrated querying over this gradually 

discovered semantic dataset, SCOUT dynamically 

passes detected source references to the query service.  

For the experiments, five context-aware application 

queries were selected that request context-relevant 

data, covering the different types of data in our 

experiment dataset (e.g., geographical entities, 

people). Two queries return geographical data, for 

instance allowing to plot physical entities (e.g., 

shopping centers, airports) on a map. The other three 

queries return “interesting” physical entities in the 

vicinity (e.g., products for sale in an affordable price 

range), together with details and indication of 

relevance (e.g., manufacturer and user comments).  

7.1.4 Methodology 

All experiments were run on the aforementioned 

device (Section 7.1.1), using the extracted dataset 

(Section 7.1.2) and five selected queries (Section 

7.1.3), in the following way: 

Experiment initiation: before each experiment, the 

Android device was re-started to clear memory.  

Query service phases: each experiment involved 

running the Source Indexing phase on all 5000 dataset 

sources, and the Data Query phase on the 5 

experiment queries (unless stated otherwise). 

Experiment runs: each experiment was run five times 

and the average processing times and battery usage 

were taken, to minimize the effect of external factors 

(e.g., OS background processes). 

Below, we list the applied configurations, and make 

general notes on the measuring methods.  

Cache configuration: the cache components were 

configured to use up to 75% of the dataset size for 

persistent storage11, and 8Mb for in-memory storage12. 

As we deal with non-evolving sources, cache 

validation was disabled. 

                                                           
11 To force the necessity of cache removals. 
12 This relatively low limit was chosen since other 

components also take up memory (e.g., SIM, RDF graphs). 

OWA features: where type inferencing was used, both 

domain/range constraints and subtype relations were 

leveraged to infer new types (only direct supertypes).  

Memory usages: To accurately measure memory 

usage, snapshots of the Android Java heap were taken 

at runtime using Eclipse MAT [37], collecting the 

retained heap size of the revelant classes. 

Energy consumption: we utilize the Android 

BatteryManager API to obtain the accurate energy 

consumption (in Joules) of query service processes. 

This involves sending an Intent each time energy 

usage needs to be calculated. After draining the 

battery purposefully, we found that mobile query 

processes had consumed 18226 Joules; any capacity 

percentage shown is relative to that number. 

Dealing with network fluctations: to avoid network 

fluctuations influencing results, the query service 

retrieves RDF sources from persistent storage, 

whereby retrieval times were substituted by average 

download times from the sources’ online locations 

(obtained by downloading 1000 random sources over 

5 runs). In the same vein, ontologies referenced by the 

Ontology Manager were stored locally, and download 

times substituted in the same way. Evaluating the 

impact of network quality is subject of future work.  

7.2 Experiment 1: Source Index Model 

This experiment evaluates the impact of source 

metadata on selectivity when identifying query-

relevant online sources. To that end, we compare 

different SIM variants, each keeping varying amounts 

of metadata: SIM1 only indexes predicates; SIM2 

indexes predicates and subject types; and SIM3 

indexes predicates, subject and object types. In 

addition, we consider the case where queries are 

executed on the entire dataset (i.e., native query 

engine performance). Since this experiment focuses on 

SIM selectivity, it does not include a local cache.  

7.2.1 Experiment 1: Results 

Source Indexing phase 

Table 1 shows SIM memory usage for the total 

dataset; processing times, including metadata 

extraction, index update and download; and energy 

usage (between brackets). 

 mem. 

size 
avg. dl. 

processing 

extract & add total 

SIM1 1143 
246 

(0.13J) 

40 (0.04J) 286 (0.17J) 

SIM2 5789 54 (0.06J) 300 (0.19J) 

SIM3 8893 57 (0.07J) 303 (0.20J) 

Table 1. SIM – Source Indexing: sizes (Kb), processing 

times per source (ms) and energy usage (J) 



To process all 5000 sources, SIM1 consumed 4.7% 

battery capacity, SIM2 consumed 5.2%, and SIM3 

consumed 5.3%. This includes downloading the 5000 

sources, which consumes ca. 3,5% battery capacity. 

Data Query phase 

Table 2 illustrates source selectivity, by showing the 

number of identified (and potentially relevant) sources 

per query. In addition, it shows the total query 

resolution times and energy consumption.  

 SIM1 SIM2 SIM3 

# exec. # exec. # exec. 

Q1 2116 895310 (272J) 254 108199 (33J) 254 108270 (33J) 

Q2 313 132289 (40J) 305 128906 (39J) 272 114949 (35J) 

Q3 1293 546501 (166J) 319 134967 (41J) 319 134978 (41J) 

Q4 1984 837748 (254J) 87 36803 (11J) 87 36805 (11J) 

Q5 2146 932846 (291J) 256 132700 (47J) 256 132635 (48J) 

Table 2. SIM – Data Query: selectivity (# sources), query 

times (ms) and energy usage (J) 

To execute all 5 queries, SIM1 consumed 5.6% 

battery capacity, SIM2 and SIM3 consumed 0.9%. 

Tables 3 to 5 show a breakup of the total query 

resolution times, including source identification13 (id), 

data collection (collect) and query execution14 

(execute) times. For collection (collect), we separately 

indicate source download times (dl) and time to 

assemble the data into a query graph (assemble). We 

indicate the energy usage for source downloads and 

total resolution times. 

SIM1 

 
 

id 

collect  

execute 

 

total dl assemble 

Q1 730 520536 (271J) 372416 1628 895310 (272J) 

Q2 16 76998 (40J) 55088 187 132289 (40J) 

Q3 244 318078 (166J) 227568 611 546501 (166J) 

Q4 219 488064 (254J) 349184 281 837748 (254J) 

Q5 366 527916 (275J) 377696 26868 932846 (291J) 

Table 3. SIM1 – Data query: times (ms) & energy usage (J) 

SIM2 

 
 

id 

collect  

execute 

 

total dl assemble 

Q1 161 62484 (33J) 44704 850 108199 (33J) 

Q2 12 75030 (39J) 53680 184 128906 (39J) 

Q3 20 78474 (41J) 56144 329 134967 (41J) 

Q4 10 21402 (11J) 15312 79 36803 (11J) 

Q5 46 62976 (33J) 45056 24622 132700 (47J) 

Table 4. SIM2 – Data query: times (ms) & energy usage (J) 

                                                           
13 This includes query analysis time as well.  
14 Query execution denotes the execution of the query on the 

already collected and assembled dataset. 

SIM3 

 
 

id 

collect  
execute 

 
total dl assemble 

Q1 209 62484 (33J) 44704 873 108270 (33J) 

Q2 11 66912 (35J) 47872 154 114949 (35J) 

Q3 27 78474 (41J) 56144 333 134978 (41J) 

Q4 11 21402 (11J) 15312 80 36805 (11J) 

Q5 75 62976 (33J) 45056 24528 132635 (48J) 

Table 5. SIM3 – Data query: times (ms) & energy usage (J) 

The case without SIM (i.e., native query engine 

performance) fails with an out-of-memory exception 

for all queries, and is thus not shown here. 

7.2.2 Experiment 1: Discussion 

Table 1 shows that memory overhead, data processing 

times and energy usage are larger for variants utilizing 

increasing amounts of metadata, which is to be 

expected. At the same time, the size of the largest SIM 

(SIM3) still only corresponds to a fraction of the 

dataset (ca. 1,7% of the 5000 sources), while the data 

processing overhead is almost negligible (< 60ms) for 

any SIM. In total, the largest SIM consumes ca. 6.2% 

battery capacity, mostly due to the required source 

downloads (4.3% download vs. 1.9% for processing). 

As such, our requirement of Minimizing resource 

usage (req. 1, Section 2) is met. 

Table 2 indicates that SIM2 and SIM3 significantly 

improve source selectivity (ruling out 95% of the 

sources on average), thus adhering better to req. 3, 

Minimizing online data downloads. In contrast, out-of-

memory errors occur when resolving any query 

without a SIM. Comparing SIM2 and SIM3, we only 

observe differences in selectivity for the 2nd query. 

Since this query restricts the object types of each triple 

pattern, SIM3 can utilize its additional metadata to 

increase selectivity. We also observe that the number 

of sources to download greatly influences energy 

usage. Capacity-wise, by ruling out many more 

sources, SIM2 and SIM3 reduce battery usage by 84% 

compared to SIM1, to a mere ca. 0,9% battery usage. 

However, Tables 4 and 5 show SIM2 and SIM3 still 

incur an exceedingly high query resolution overhead 

(ca. 0.5 – 2.25 minutes). Most of this overhead occurs 

during data collection, which involves downloading 

the sources and assembling all source data into an 

(AndroJena) query graph (which requires parsing the 

data). As shown in the table, over half this time is 

spent on downloading the data (ca. 56%). Therefore, 

employing a local cache has the potential to greatly 

reduce collection overhead. 



In conclusion, the SIM variants utilizing most source 

metadata (SIM2 and SIM3) represent the best 

solutions. These significantly increase selectivity, and 

thus improve query execution times and energy 

efficiency; while keeping data processing, memory 

usage and battery consumption during source 

processing in check. As such, regarding source 

identification, this confirms that source metadata 

indeed enables a balance between fine-grained data 

retrieval, and memory/ processing requirements. On 

the other hand, query resolution is clearly impractical, 

necessitating a local cache to reduce download times. 

7.3 Experiment 2: Cache 

This section evaluates the impact of caching on query 

service performance. We present an experiment 

comparing two different cache organizations: Source 

Cache, organizing cached data via origin source; and 

Meta Cache, grouping data via shared metadata. For 

Source Cache, the best performing SIM variant 

(SIM3) is employed for online source identification. 

As Meta Cache performs both online source 

identification and local caching (see Section 5.1.2), it 

is deployed autonomously. For these experiments, 

Least Recently Used (LRU) is employed as removal 

strategy; Section 7.4 shows the effect of applying 

different removal strategies. 

7.3.1 Experiment 2: Results 

Source Indexing phase 

In Table 6, we show the volatile memory and 

persistent storage space utilized by Source Cache and 

Meta Cache when serving the full dataset. We 

separately indicate the memory overhead of 

supporting data structures for the SIM and the cache 

(i.e., Java objects and internal indices), and the actual 

payload (i.e., the stored source data). For the latter, we 

further differentiate between the measured payload 

size (obtained via snapshots of the Java heap) and the 

estimated payload size (between brackets), which is 

approximated at runtime to dynamically manage 

memory space (see Section 5.3). For ease of reference, 

Table 6 also includes the corresponding SIM sizes, as 

Source Cache is used in combination with the SIM. 

 
cache 

in-memory 
persistent 

SIM cache payload 

Source 8893 7198 6323 (8192) 405285 

Meta n/a 35821 16882 (7778) 426834 

Table 6. Cache – Source Indexing: sizes (Kb). 

In Table 7, we show the average data processing 

overhead and energy usage, resulting from inserting 

data into the cache (insert) and performing the LRU 

removal strategy whenever the cache is full (removal). 

Source Cache incurs an extra overhead of updating the 

SIM (SIM). Meta Cache incurs an extra overhead for 

extracting the different metadata combinations from 

the RDF sources (extract). 

 
cache 

avg. dl. 
add 

removal total 
SIM extract insert 

Source 
246 

(0.13J) 

65  
(0.07J) 

n/a 
87  

(0.08J) 
1126  
(0.8J) 

1524  
(1.1J) 

Meta n/a 
81 

(0.09J) 
81 

(0.2J) 
170 

(0.3J) 
578 

(0.73J) 

Table 7. Cache – Source Indexing: processing times (ms) & 

energy usage (J) / source 

To process 5000 sources, Source Cache consumes ca. 

30% battery, while Meta Cache consumes ca. 20%. As 

mentioned before, downloading 5000 sources 

consumes ca. 3.5% battery capacity (included in the 

percentages shown above). 

Data Query phase 

In Tables 8 and 9, we show the total query resolution 

times and energy usages with their constituent parts. 

In particular, we distinguish between the following 

parts: 1) query analysis, which involves extracting 

search constraints; 2) SIM access, required by Source 

Cache for source identification; 3) cache access, 

which comprises retrieving cached data (retrieval) and 

downloading missing sources (miss); 4) data 

assembly, which involves assembling the retrieved 

data into a final query graph; and 5) query execution, 

where the query is executed on the collected query 

graph. For retrieval, we show the number of retrieved 

in-memory/persistent cache units, as well as the total 

retrieval time and energy usage. For misses, we 

indicate the total number of misses and amount of 

resulting source re-downloads (between brackets); 

accompanied by the total incurred download times and 

energy usage. The data collect part further shows the 

total number of returned triples (#t), thus illustrating 

the data retrieval fine-graininess. For Meta Cache, the 

number of generated type triples, required to make the 

type of cached resources explicit in the query dataset, 

is shown between brackets (see Section 5.1.2). To 

execute all 5 queries, Source Cache consumed 0.4% 

battery, while Meta Cache consumed 0.2%.  



Table 10 shows maintenance times and energy usage 

resulting from cache access. This comprises 1/ 

updating the cache with new source data, in case 

missing data was downloaded (update); and 2/ running 

the removal strategy (removal), in case storage limits 

were exceeded. Since maintenance occurs after query 

resolution, it is not included in the access times. We 

note that these results heavily depend on the utilized 

removal strategy (see next section). 

 
 

Source Cache Meta Cache 

update removal update removal 

Q1 0 75137 (44J) 3316 (16J) 13 (1.7J) 

Q2 1499 (2.4J) 76237 (46J) 456 (1.4J) 1 (0.26J) 

Q3 0 47249 (27J) 847 (4.4J) 258 (0.93J) 

Q4 0 37742 (22J) 0 1 (0.01J) 

Q5 0 54736 (31J) 0 1 (0.01J) 

Table 10. Cache – Data Query: maintenance (ms) and 
energy consumption (J) 

Collectively, this maintenance process costs Source 

Cache ca. 0.9% battery capacity, and for Meta Cache 

ca. 0,04%. 

7.3.2 Experiment 2: Discussion 

As shown in Table 6, the Meta Cache supporting 

structures (cache column) take up significantly more 

memory (ca. factor 5) compared to Source cache, even 

combined with the SIM. This is in line with 

expectations, as Meta Cache requires 3 indices instead 

of just 1 for Source Cache. Given the number of 

distinct metadata combinations (24068), these indices 

also comprise more entries, and many more storage 

unit objects need to be kept (see Section 5.1.2). 

However, this overhead still only takes up a fraction 

of the total dataset; 6,7% for Meta Cache, and 3% for 

Source Cache. We note that the payload size estimated 

at runtime (between brackets) is slightly higher than 

the actual payload size15, due to lack of effective 

runtime memory analysis (see Section 5.3).  

On the other hand, Table 7 shows that the overall 

processing overhead and energy consumption is much 

lower for Meta Cache. In particular, cache removal is 

much less costly for Meta Cache, reducing total 

processing and energy overhead. Meta Cache keeps 

smaller and more fine-grained cache units, leading to 

smaller storage and removal times. Also, we note that 

Meta Cache incurs an extra extraction step, which 

involves extracting source triples with their metadata 

(extract column). Although we optimized this process 

with factor 10 (see Section 4.2), it still takes up half of 

the processing overhead. Although source processing 

takes up 30% and 20% for Source and Meta Cache 

respectively, we note that this is a one time cost, and 

typically ensues over a longer period of time (thus 

spreading mobile resource usage over time). 

The utility of local caching is clearly indicated by 

Tables 8 and 9. They show a dramatic decrease in total 

resolution times, compared to when no cache is used 

(see Table 2, 5): an average reduction of ca. 80% in 

total resolution for Source Cache, and ca. 90% for 

Meta Cache. Energy consumption is low (respectively 

0,4% and 0.2% for all queries combined), down from 

                                                           
15 This difference is higher for Meta Cache, since more 

cache unit objects are kept. 

Source Cache 

 

 

query 
analysis 

 

SIM  
access 

cache access  
data 

assembly 

 

query  
exec. 

 

 
total 

retrieval miss  

total # time # time #t time 

Q1 133 30 8/246 4758 (4.8J) 0 0 4762 (4.8J) 25364 293 370 (0.22J) 5588 (5.2J) 

Q2 23 3 0/19 334 (0.38J) 253 (253) 62238 (34J) 62572 (34.4J) 31706 296 133 (0.09J) 63027 (34.5J) 

Q3 5 26 0/319 4720 (5.1J) 0 0 4724 (5.1J) 24396 291 264 (0.17J) 5310 (5.3J) 

Q4 8 3 0/87 2732 (2.6J) 0 0 2732 (2.6J) 13295 152 70 (0.04J) 2965 (2.7J) 

Q5 12 65 4/252 3249 (5.6J) 0 0 3251 (5.6J) 13392 158 24443 (14J) 27929 (19.8J) 

Table 8. Source Cache – Data Query: query resolution (ms) & energy usage (J) 

Meta Cache 

 

 

query 

analysis 

cache access  
data assembly 

 

query 

exec. 

 

 

total 

retrieval miss  
total # time # time #t time 

Q1 63 1/609 2372 (2J) 176 (50) 12300 (6.4J) 14764 (9.1J) 1592 (19597) 529 342 (0.2J) 15698 (9.4J) 

Q2 7 1/5 65(0.15J) 1 (32) 7872 (4.1J) 7938 (4.3J) 867 (1759) 56 112 (0.08J) 8113 (4.3J) 

Q3 7 66/126 586 (1J) 24 (32) 7872 (4.1J) 8476 (5.2J) 1804 (25745) 639 214 (0.2J) 9336 (5.5J) 

Q4 8 0/6 61 (0.16J) 0 0 61 (0.16J) 545 (648) 82 57 (0.06J) 208 (0.23J) 

Q5 12 8/1 11 (0.36J) 0 0 11 (0.36J) 2914 (4292) 403 23657 (14J) 24083 (14.3J) 

Table 9. Meta Cache – Data Query: query resolution (ms) & energy usage (J) 

 

 

 

Table 9. Meta Cache – Data Query: query resolution (ms) 

 



0.9% for SIM3 due to much less downloads. This 

reduced battery usage is especially apparent when 

looking at the individual energy usages in Tables 5 

and 8-9. 

In general, we observe that Meta Cache outperforms 

Source cache, especially regarding cache retrieval. For 

Meta Cache, retrieved cache units only comprise 

source data associated with the requested query 

metadata; resulting in more fine-grained retrieval, and 

thus lower cache retrieval times (see retrieval – time) 

and associated energy usage. This fine-graininess is 

further illustrated by the number of collected triples 

(see collect data - #t column). As such, Meta Cache 

adheres to our requirement of Minimizing the query 

dataset (Section 2, req. 2). In Source Cache, data is 

instead retrieved per origin source, whereby other, 

query-irrelevant data is also retrieved. Since most 

cache units are stored persistently, the majority of the 

data needs to be read from storage, significantly 

increasing retrieval time and energy usage. For Meta 

Cache, we further note that cached type statements do 

not require (persistent) retrieval, but are instead 

generated based on associated metadata (see Section 

5.1.2). As before, these observations confirm that a 

balance between fine-grained retrieval and memory 

and data processing requirements can indeed be 

achieved by focusing on source metadata. 

Despite improvements in data retrieval, cache misses 

have the ability to cause major problems for Meta 

Cache (see miss column). Indeed, cache misses for 

Q1, Q2 and Q3 cause a large number of source re-

downloads, which result in worse performance for 

Meta Cache for Q1 and Q3. Since cache units keep 

data sharing the same metadata, typically with 

multiple origin sources, a cache miss requires re-

downloading all related sources. This is especially 

problematic regarding energy usage, as downloading a 

source takes more energy than retrieving it locally 

(e.g., see Source Cache; Q5 retrieval time vs. Q2 miss 

time). In the following section, we evaluate a removal 

strategy aiming to mitigate this problem. 

Although more triples are involved, data assembly 

times are slightly lower for Source Cache (avg. 238 

ms vs. 342 ms). Source Cache retrieves source data in 

the form of AndroJena graphs, which can be very 

efficiently combined (see Section 5.3). On the other 

hand, assembly times for Meta Cache clearly depend 

on the number of triples. Query execution times are 

very similar for both Source and Meta Cache, and 

rather depend on the query complexity than the query 

dataset size. Regarding cache maintenance, Table 10 

shows that cache removals are very costly for Source 

Cache, due to more coarse-grained cache units.  

7.4 Experiment 3: Removal strategies  

In this experiment, we evaluate our novel Least-

Popular-Sources (LPS) removal strategy, designed to 

tackle the Meta Cache cache-miss problem described 

in the previous section. In particular, we study its 

ensuing cache composition and effects on query 

performance, and compare these findings to when a 

regular strategy is applied (in this case, LRU). The 

impact of using different factor weights in the LPS 

removal value calculation is investigated, as well as 

the impact of different persistent data groupings. We 

note that the download time factor is not considered 

here, since we aim to avoid network fluctuations 

influencing experiment results (see Section 7.1.4). 

7.4.1 Experiment 3: Results 

Source Indexing phase 

Table 11 shows the Meta Cache memory sizes16 for 

the total dataset, when respectively applying LRU and 

LPS. For each strategy, we indicate the total memory 

size taken up by Meta Cache, size of the payload (i.e., 

cache unit objects and source data), and the size taken 

up by extra supporting structures (e.g., indices) used 

by the removal strategy (removal). 

Meta Cache 

removal 
strategy 

in-memory sizes 

total payload removal 

LRU 35821 16882 1197 

LPS 45777 27905 2325 

Table 11. Removal strategies – Source Indexing: Sizes (Kb) 

In Table 12, we show the resulting cache composition, 

focusing on “missing” data; i.e., data that was 

removed to clear persistent storage space. This 

includes missing keys (keys), which stand for 

metadata combinations associated with removed cache 

units; and missing sources (sources), which represent 

sources to be re-downloaded when a particular 

missing key is referenced (cache miss). The 

distribution column relates missing keys with missing 

sources; in particular, indicating the range of potential 

source re-downloads for missing keys. For instance, a 

missing key in range 1-10 incurs 1-10 source re -

downloads in case the key is referenced. For LPS, we 

show the results for different weightings of the 

popularity factors (see Section 5.2.1) in the strategy 

column. These weightings were obtained by either 

considering only one of the two factors, or the sum of 

both factors, whereby the impact of one factor is 

                                                           
16 These were accurately measured using the Eclipse MAT. 



potentially reduced (i.e., divided by a power of 10). 
Note that since factor f1/100 + f2 yields the same 

results as when f1 is not considered, it is left out. 

 

LRU 
LPS 

removal-unit retrieval-unit 

170 (0.3J) 117 (0.3J) 204 (0.4J) 

Table 13. Removal strategies – Source Indexing: 
replacement times (ms) & energy usage (J) / source 

Table 13 summarizes the maintenance overhead. It 

only shows the overhead (time and energy usage) of 

running the removal strategy, since the extraction and 

insertion operations (see Table 7) are not influenced 

by removal strategies. For LPS, we further show the 

results for two potential persistent data groupings. For 

retrieval-unit grouping, persistent data sharing the 

same metadata is stored in a single data structure (i.e., 

file); for removal-unit grouping, persistent data is 

grouped based on their origin source. To obtain these 

values, the f1+f2/100 popularity factor weighting was 

employed; since this struck the best balance between 

the number of missing keys and sources to be re-

downloaded. To process 5000 sources, LPS removal-

unit consumed 18% battery capacity, whereas LPS 

retrieval-unit consumed 20%.  

Data Query phase 

Table 14 presents times and energy usage resulting 

from cache access for LPS, as only these are 

influenced by the removal strategy. We refer to Table 

9 for results related to LRU. As before, we 

differentiate between cache retrieval (retrieval) and 

misses (miss). Also, we show the total resolution time 

(also including constituent times not shown here). For 

LPS, each retrieval unit requires loading one or more 

storage units (see Section 5.2.2). Table 14 shows the 

number of retrieval units, with the amount of loaded 

storage units between brackets. In addition, the table 

shows retrieval times for each persistent data grouping 

method (a=removal-unit, b=retrieval-unit). As before, 

the cache miss part shows the total number of misses, 

accompanied by the resulting amount of sources to re-

download (between brackets). We again assume the f1 

+ f2/100 popularity factor weighting29. 

LPS – Meta cache 

 
retrieval miss cache 

access 

 

total # time # time 

Q1 
784 

(935) 
a: 1301 
b: 3594 

5 
(5) 

1230 
a: 2531 (2.3J) 
b: 4824 (3.6J) 

a: 3547 (2.6J) 
b: 5854 (3.8J) 

Q2 
6 

(272) 

a: 383 

b: 90 
0 0 

a: 383 (1.3J) 

b: 90 (0.13J) 

a: 583 (1.4J) 

b: 289 (0.25J) 

Q3 
216 

(957) 
a: 1114 
b: 695 

0 0 
a: 1114 (2.1J) 

b: 695 (1J) 
a: 2081 (2.3J) 
b: 1536 (1.2J) 

Q4 
6 

(467) 

a: 587 

b: 68 
0 0 

a: 587 (0.6J) 

b: 68 (0.2J) 

a: 750 (0.7J) 

b: 214 (0.3J) 

Q5 
9 

(2146) 
a: 2226 
b: 318 

0 0 
a: 2226 (2.4J) 
b: 318 (0.9J) 

a: 28269 (17J) 
b: 25818 (16J) 

Table 14. LPS – Data Query: query resolution (ms) and 
energy consumption (J) 

To execute 5 queries, LPS removal-unit and retrieval-

unit consumed ca. 0.1% battery capacity. 

 

 
 

LRU LPS 

 
replacement 

replacement 

a b 

Q1 13 (1.7J) 3220 (2.1J) 3466 (3J) 

Q2 1 (0.26J) 10524 (11J) 20304 (10J) 

Q3 258 (0.93J) 6011 (7J) 20980 (13J) 

Q4 1 (0.01J) 6213 (3.8J) 11949 (8J) 

Q5 1 (0.01J) 55202 (90J) 58655 (40J) 

Table 15. LPS – Data Query: cache maintenance (ms) and 
energy consumption (J) 

Finally, Table 15 shows the removal strategy times 

and energy usage from cache access. Both adding new 

data due to cache misses, as well as loading cached 

data into memory, may cause the memory limit to be 

exceeded, necessitating cache maintenance. For LPS, 

we again indicate these times for removal-level (a) 

and retrieval-level (b) grouping. Since maintenance 

occurs after query resolution, it is not included in the 

previously shown cache access times. We note that the 

maintenance process takes up ca. 0.6% battery for 

LPS removal-unit, and 0.4% for retrieval-unit. 

7.4.2 Experiment 3: Discussion 

Firstly, we observe that LPS incurs a larger memory 

overhead (see Table 11). By decoupling removal, 

storage and retrieval units, more cache unit objects 

need to be kept in-memory, and extra indices are 

needed to link these units. At the same time, while 

strategy #keys #sources distribution 

LRU 11058 1084 1-10: 10854 10-50: 196 50-100: 1 100-250: 6 250-500: 1 

        

LPS  f1+f2 9322 819 1-10: 9232 10-50: 82 50-100: 8 100-250: 0 250-500: 0 

LPS   f1 741 1586 1-10: 643 10-50: 60 50-100: 4 100-250: 21 250-500: 7 

LPS  f1+f2/100 961 1049 1-10: 857 10-50: 86 50-100: 4 100-250: 11 250-500: 3 

LPS   f1+ f2/10 2061 752 1-10: 1967 10-50: 85 50-100: 3 100-250: 6 250-500: 0 

LPS   f2 10314 785 1-10: 10224 10-50: 82 50-100: 8 100-250: 0 250-500: 0 

LPS   f1/10+ f2 10266 792 1-10: 10176 10-50: 82 50-100: 8 100-250: 0 250-500: 0 

Table 12. Removal strategies – Source Indexing: removed data 

 



presenting a 27% increase compared to LRU, this 

overhead still only makes up 9% of the total dataset.  

Table 12 illustrates how LPS copes with the cache-

miss issue of Meta Cache by affecting cache 

composition; in particular, by enabling a balance 

between the 1/ likelihood of cache misses, and 2/ the 

number of source re-downloads. The results show that 

as more preference is given to source-data popularity 

(f1), the total number of missing keys is minimized; 

decreasing the likelihood of cache misses. However, 

the number of missing sources increases as well, 

together with the amount of missing keys resulting in 

many source re-downloads (see ranges 100-250 and 

250-500). When source-metadata popularity (f2) is 

preferred, the total number of missing sources 

decreases, and the number of source re-downloads per 

missing key is capped (i.e., no more outliers in ranges 

100-250 and 250-500). However, the number of 

missing keys increases drastically, raising the chance 

of a cache miss. We note that the best weighting 

depends on the online dataset composition; including 

the number of distinct metadata combinations 

contained in sources (f1), and the extent to which 

metadata is shared across the online dataset (f2). As 

such, further research on this issue is needed. For our 

experiment dataset and queries, the weighting 

f1+f2/100 yields the best balance. Table 13 further 

shows that, when grouping persistent data per 

removal-unit, memory management is slightly more 

efficient, since only one persistent file is affected per 

operation (see Section 5.2.2).  

Reflecting the improved cache composition, 

significantly less cache misses are observed during 

query resolution (see Table 14). As a side-effect, this 

also increases the cache retrieval time, since more 

locally available (persistent) cache units are retrieved. 

Moreover, since retrieval and storage units are 

separated, a single retrieval likely results in accessing 

and combining data from multiple storage units, also 

increasing retrieval times. Nevertheless, overall query 

resolution times are reduced, in particular for those 

queries where cache misses presented a problem for 

Meta Cache (see Tables 9 and 14; Q1, Q2, Q3) 

compared to Source Cache. We also note that energy 

usage is much lower for these queries (0,1% for all 

queries); resulting from the fact that far less 

downloads are necessary. By applying LPS, Meta 

Cache now outperforms Source Cache for any query. 

Further, we observe that grouping the persistent data 

per retrieval-unit (option b in Table 14) optimizes 

retrieval time, since only one persistent file needs to 

be read per retrieval operation.  

However, Table 15 again shows that cache 

maintenance occurring after query resolution, 

including performance times and energy usage, are 

much higher for LPS than LRU. Since the LPS 

removal unit is more coarse-grained (i.e., per origin 

source) compared to LRU (i.e., per metadata 

combination), larger removal penalties are incurred. 

Even when grouping persistent data per removal unit 

(column a), this maintenance results remain relatively 

high. For queries 1 – 4 this is avg. ca. 6,5s, with an 

outlier for query 5, which has a steeper overhead (ca. 

59s). Further investigation and optimization of this 

process is future work (see Section 9). We 

nevertheless note that maintenance times and energy 

consumption for Meta Cache + LPS represent a 

significant improvement compared to the baseline 

approach, Source Cache + LRU (i.e., ca 57% 

improvement; see Tables 10, 15). 

To conclude, the most optimal querying configuration 

is Meta Cache + LPS (retrieval-unit). For the 

relatively large experiment dataset, Meta Cache + LPS 

requires more memory (27%), processing time (20%) 

and slightly more energy (+0.1 J / source; although 

total battery usage is virtually equivalent) than LRU 

during the source indexing phase. These are one-time 

costs, and are typically incurred over a longer period 

of time (thus spreading mobile resource usage over 

time). Once set up, Meta Cache + LPS results in fast 

query execution times (6s; 0,3s; 1,5s; 0,2s, with an 

outlier of 25s for query 5), and low energy 

consumption (0,1% for all queries combined). These 

energy reductions are again most apparent when 

looking at individual energy usages in Tables 9, 14. 

For the outlier query, we note that the bulk of the 

resolution time (23s of 25s) is made up by the query 

execution time of the external RDF library, 

AndroJena. We thus conclude that for our experiment 

queries and dataset, this optimal configuration 

supplies realistic performance (barring the RDF 

library performance issues with query 5). However, 

LPS still incurs a high maintenance overhead after 

query execution, depending on the query (3s, 20s, 21s, 

12s, 59s). Although these times already present a good 

improvement (ca. 57%) compared to the baseline 

approach (i.e., Source Cache), cache maintenance 

needs to be further optimized in future work.  

7.5 Experiment 4: OWA features 

This experiment evaluates the two Semantic Web 

Open World Assumption (OWA) features, type 

inferencing and type mediation. The best performing 

variant of the SIM and cache were considered, namely 

SIM3 and Meta Cache. We investigate the 



improvements in data access and compare them to the 

incurred performance and memory overhead. 

7.5.1 Experiment 4: Results 

Source Indexing phase 

Type inferencing can be applied at two places in the 

query service: on dataset sources (@source), and on 

posed queries (@query). Clearly, only type 

inferencing on sources influences performance during 

the Source Indexing phase.  

Table 16 shows the overheads for SIM3 and Meta 

Cache when type inferencing is enabled. Firstly, it 

shows the increased memory size for the total dataset. 

Also, the extra computational overhead and energy 

usage of type inferencing is shown (performance), 

including the inferencing time itself (infer) and 

ontology retrieval time (retrieval). We further show 

the removal strategy time, which is influenced by the 

increased cache unit size due to type inferencing (see 

Section 6.2). We note that, due to the exceedingly 

high amount of energy consumed by cache removal, 

the mobile battery was drained after 4524 sources. 

Type mediation requires resource information to be 

tracked, such as types. To index this information, we 

keep a separate resource index (see Section 6.1). Table 

17 shows the computational overhead and energy 

usage of type mediation for SIM3 and Meta Cache 

(mediation), together with the memory consumed by 

the resource index (index size). As the type mediation 

processes differ for these components, different index 

sizes and mediation results are incurred. We again 

show the removal strategy time, which is likewise 

influenced by type mediation (see Section 6.1). As 

was the case before, cache removal drained the mobile 

battery after 4464 sources. 

 memory 
size (Kb) 

performance (ms) 

infer retrieval removal 

SIM3 60549 

11 60 

n/a 

Meta Cache 49364 3024  

(15446J – 3.4J / src) 

Table 16. Type inferencing – Source Indexing: memory 

(Kb), performance (ms) overhead and energy usage (J) 

 index performance (ms) 

 size (Kb) mediation removal 

SIM3 71238 996 n/a 

Meta Cache 63846 2264 
3986 

(6636J – 1.5J / src)  

Table 17. Type mediation – Source Indexing: index size 

(Kb), performance (ms) overhead and energy usage (J). 

Data Query phase 

Regarding type inferencing, we consider three cases 

during querying; applying type inferencing on posed 

queries (@query), on dataset sources (@source), and 

on both (@both). Table 18 shows the effects on data 

access, indicating the number of query results (res) as 

well as the amount of sources identified by the SIM17 

(src). For ease of reference, the table also shows the 

original selectivity (original). In case the results differ 

from the original, the new results are shown in bold.  

 original @query @source @both 

res src res src res src res src 

Q1 4 254 0 49 4 254 4 215 

Q2 272 272 272 271 658 313 658 313 

Q3 319 319 0 0 319 319 319 319  

Q4 77 87 77 87 77 87 77 87 

Q5 148 256 0 256 148 256 148 256  

Table 18. Type inferencing – Data Query: data access. 

Table 19 shows the type inferencing overhead for both 

components during querying. As type inferencing 

needs to be re-applied to re-downloaded sources (see 

Section 6.2), this process also incurs a query-time 

overhead @source. We note that, since the source 

indexing phase drained the battery, no battery usage 

data is available for the data query phase. 

 
@query 

SIM Meta Cache 

@source @source 

Q1 174 45051 341 

Q2 100 484646 420 

Q3 128 383611 173 

Q4 84 3743 0 

Q5 156 120774 0 

Table 19. Type inferencing – Data Query: data retrieval 

(ms). 

For type mediation, Table 20 illustrates the effects on 

data access, indicating the new SIM source selectivity 

(src) and new amount of query results (res) (values 

differing from the original in bold). Also, the table 

indicates the performance overhead during querying 

(synchronization). Comparable to type inferencing, the 

original contents of re-downloaded sources need to be 

synchronized with mediated resource types (see 

Section 6.1). As before, since the source indexing 

phase drained the battery, no battery usage data is 

available for the data query phase. 

 selectivity synchronization 

res src SIM3 Meta Cache 

Q1 4 254 1104 113 

Q2 273 272 1413 58 

Q3 319 319 1190 151 

Q4 77 87 235 40 

Q5 148 256 1008 17 

Table 20. Type mediation – Data Query: data access (ms) 

7.5.2 Experiment 4: Discussion 

This section discusses the effects of applying the 

OWA features. 

                                                           
17 Although the Meta Cache selectivity is also influenced, 

the increase in selectivity is most apparent for the SIM. 



7.5.2.1 Type inferencing 

From Table 16, we observe that type inferencing 

results in large memory usage. While the 

computational overhead of type inferencing itself is 

acceptable, it incurs a very high removal time (and 

associated high energy usage, draining the battery 

after processing 4524 sources); due to the increased 

size of the cache units. This contradicts our 

requirement of reduced resource usage. As such, we 

conclude that, in our mobile query service, type 

inferencing is unfeasible at this point. 

Regarding query resolution, Table 18 shows that  

applying type inferencing on posed queries (@query) 

leads to the search constraints ruling out more sources 

(Q1, Q2, Q3), although results are no longer returned 

for Q1, Q3 and Q5. On closer inspection, extra query 

type constraints are inferred for those queries that are 

not found in the online dataset. Typically, content 

authors do not exhaustively type RDF resources; an 

issue that can be resolved by additionally applying 

type inferencing on sources. In that case (@both), the 

same inferred types are added to the source metadata, 

resolving the issue. Furthermore, many more query 

results (658) are now returned for Q2, thus enhancing 

data access. Finally, compared to only applying source 

type inferencing (@source), we observe that 

additionally enabling query type inferencing (@both) 

improves data selectivity for Q1. 

The above indicates that type inferencing should be 

applied on both queries and sources (@both). Table 19 

shows that for Meta Cache, type inferencing yields an 

acceptable overhead, but exceedingly high processing 

times for SIM. This results from re-applying type 

inferencing to all identified sources (SIM), which are 

more numerous than cache-missed sources. Since 

online data sources are not under our control, they 

cannot be updated with inferred types. Locally storing 

inferred types for online sources could mitigate the 

problem to some extent, and is considered future 

work. We also note that inferred types may already be 

materialized in the online dataset (see Section 6.2); if 

so, type inferencing @source is unnecessary.  

Given our observations regarding source indexing, we 

conclude that type inferencing, when aiming to ensure 

completeness of query results, is currently not feasible 

in our query service. Analogously to RDF stores, type 

inferencing can be switched on/off to suit dataset 

composition, device capabilities and app requirements. 

7.5.2.2 Type mediation 

Table 17 shows that, just like with type inferencing, 

type mediation results in large memory usage. At the 

same time, computational overhead is problematic as 

well; regarding both type mediation overhead and 

removal overhead. Since type mediation involves 

continuously loading previously stored cache units 

into memory (see Section 6.2), it incurs an 

exceedingly high removal time and energy usage 

(draining the battery, as was the case for type 

inferencing, after 4464 sources). 

Both these observations contradict req. 1, Minimizing 

resource usage, and makes type mediation currently 

impractical for mobile devices for our current query 

service. Analogous to type inferencing, type mediation 

also incurs a query-time overhead called 

synchronization (see Table 20). In this process, 

identified sources (SIM) or cache-missed sources 

(Meta Cache) are synchronized with the previously 

mediated types. As before, this process is necessitated 

by our setting where online sources cannot be updated. 

However, overheads resulting from this process can be 

considered acceptable for Meta Cache and SIM. 

We further observe only a small impact on selectivity 

and data access, with the same SIM source selectivity 

and only one extra query result (Q2). In particular, this 

extra result concerned an RDF resource that was 

referenced but not typed in a first source, and then 

typed in a second source. For our real world dataset, 

situations where RDF resources were found in 

multiple sources occurred 2097746 times, and only in 

1,7% did these sources specify different resource 

types, thus necessitating type mediation. Clearly, the 

dataset composition will impact the number of 

occurrences. At the same time, as our experiment 

dataset was extracted from real-world sources, this 

may be considered an indication for other datasets as 

well. An a priori analysis could determine whether 

type mediation is required, whereby the process could 

be disabled to reduce memory and processing 

overhead. This is subject of future work. 

8. Related work 

Currently, a number of mobile RDF stores exist to 

access and manipulate locally stored RDF data, 

including AndroJena [25], RDF On The Go [15], and 

i-MoCo [16]. Analogous to our query service, the 

MobiSem Context Framework [12] aims to supply 

transparent and integrated access to multiple online 

Semantic Web sources. The framework continuously 

and pro-actively replicates Semantic Web data from 

pre-configured online datasets, based on their 

relevance to the user’s context, and supplies 

programmatic access to the local data. Such pro-active 

data selection avoids downloads at query-time, yet it is 



necessarily domain-specific, and cannot support 

arbitrary application queries. In contrast, our query 

service is re-active and thus supports any scenario 

encapsulated by application queries; at the cost of 

potential download overhead at query time. 

Query distribution approaches likewise supply 

integrated query access across multiple online 

datasets. As opposed to retrieving relevant data and 

querying it locally, these systems distribute query 

execution across dataset query endpoints. In 

particular, they divide queries into subqueries, each of 

which is executed on relevant datasets; and afterwards 

integrate the results. Such approaches relieve clients 

of resource-intensive query resolution, and are well 

suited to query large datasets outfitted with online 

query endpoints. However, they are not suitable for 

semantic data not residing behind a query endpoint, 

which is the focus of our query engine.  

To identify query-relevant datasets, as well as 

optimize query distribution, query distribution systems 

typically rely on indices. The Distributed ARQ 

(DARQ) [19] and Semantic Web Integrator and Query 

Engine (SemWIQ) [20] systems each keep an index 

with summary info on each dataset, including found 

predicates, classes (SemWIQ) and resource patterns 

(DARQ), indicating which subjects and objects occur 

together with found predicates. Statistical information 

is kept as well, which is used to further optimize query 

distribution. The authors in [24] further index 

predicate paths found in datasets, allowing a more 

accurate identification of relevant datasets. In settings 

where datasets are under third-party control, keeping 

these indices up-to-date is paramount. The 

aforementioned query distribution approaches, as well 

as our query service, tackle this issue by focusing 

mainly on schema-level information (e.g., classes and 

predicates), as it can be assumed that schema-level 

changes will occur less often. The Adaptive 

Distributed Endpoint RDF Integration System 

(ADERIS) system [38] aims to avoid this issue by 

keeping only limited summary data, and instead 

collecting runtime selectivity estimates. 

Notwithstanding their similarity in using source 

metadata for indexing purposes, we note that none of 

these approaches explicitly takes the Open World 

Assumption into account, and thus do not guarantee 

query result completeness. 

Many RDF stores focus on keeping extensive indices 

to speed up access to RDF data, trading index space 

and update efficiency for retrieval time. AndroJena is 

a port of the well-known Jena RDF store to the 

Android platform. To speed up query access, this store 

uses 3 hash tables, respectively indexing the subjects, 

predicates and objects of RDF triples. Depending on 

the concrete terms specified in the query, AndroJena 

selects between these hash tables. Our Meta Cache 

utilizes a similar index structure for quick data 

retrieval. However, since the Meta Cache indices keep 

schema-level information instead of instances, they 

contain significantly less entries. Similar to 

AndroJena, other RDF stores also trade memory space 

to optimize data access. The Yet Another RDF Store 

(YARS) system [28] keeps 6 indices to cover all 

potential triple access patterns. HexaStore [27] 

similarly relies on a sextuple indexing scheme to 

cover each potential triple access pattern. Aside from 

their higher memory usage, caused by having multiple 

instance-based indices, these approaches also have 

higher update and insertion costs, since all indices 

need to be updated [27]. Analogous to our query 

service, both systems apply dictionary encoding to 

reduce storage space and optimize query processing. 

We note that two of the mobile RDF stores mentioned 

at the beginning of the section, namely RDF On The 

Go [15] and i-MoCo [16], are respectively built on top 

of YARS and Hexastore.  

Most caching approaches are based on client-server 

architectures, where data can be retrieved on-demand 

from the server and clients cache the data for later re-

use [22]. In case of a cache miss, the missing data is 

directly obtained from the server. Query caching 

presents a particular type of client-server caching, 

whereby query results are cached and later re-used by 

other queries, by using query folding techniques [39]. 

To deal with cache misses, the system generates a 

remainder query to retrieve missing data from the 

server. These kinds of approaches cannot be directly 

applied in our setting, where data does not originate 

from a particular online server, but is instead spread 

across online files. Regarding cache replacement, 

ample work has been put in developing policies for 

mobile settings. Such policies typically rely on 

semantic locality, which is based on general properties 

and relations of data items. For instance, in [22], 

semantic locality indicates that query results, 

associated with physical locations closest to the user, 

will be frequently referenced. Similarly, the Furthest-

Away-Replacement (FAR) policy [23] assumes that 

cached data, which is located in the user’s movement 

direction and currently nearby, will be frequently 

referenced. As before, we opted for a replacement 

policy that is instead domain-independent, and focuses 

on dealing with our particular querying scenario where 

data is captured in online files. 



Finally, various invalidation strategies exist to detect 

invalid, no longer up-to-date information in client-

server architectures and mobile scenarios. For 

example, the Selective Adaptive Sorted (SAS) 

invalidation strategy [40] ensures that updates on data 

items on the server are reflected on the mobile device. 

In [41, 42], the authors present location-dependent 

cache invalidation, which ensures validity of location-

specific cached data retrieved from information 

services. As before, such strategies are not suitable in 

our setting, where data does not originate from a 

single, special-purpose server. Instead, we rely on the 

built-in cache support of HTTP, which is typically 

also used by proxy caches. 

9. Conclusions 

We presented a general-purpose mobile query service, 

which supplies client applications with integrated 

querying capabilities across a currently untapped part 

of the Semantic Web; consisting of large amounts of 

small sources, namely RDF files and the growing set 

of annotated websites. Mobile clients are hereby able 

to outline and dynamically extend their relevant 

selection of online semantic data, according to the 

application scenario and requirements. 

Our solution is conceived according to a number of 

challenges occurring in this particular mobile querying 

scenario, as well as their ensuing requirements. It 

involves 1/ fine-grained identification of query-

relevant online sources, and 2/ locally caching data for 

later re-use. In order to reconcile fine-grained data 

selection, either during online source identification or 

cached data retrieval, with memory and processing 

usage, we developed source identification and caching 

components leveraging the semantics of 

RDF(S)/OWL data. To fully evaluate the effect of 

source metadata in realizing this goal, we developed 

and evaluated several variants for each component. 

Regarding source identification, three Source Index 

Models were implemented; each maintaining 

increased amounts of metadata. We further explored 

two cache variants, Source Cache and Meta Cache, 

which respectively organize cached data based on 

origin source and shared metadata. To optimize the 

query service for large amounts of small, online 

semantic sources, we introduced a removal strategy 

called Least-Popular-Sources (LPS). Our query 

service further explores supports for the Semantic 

Web’s distributed nature and OWA by keeping 

indexed metadata up-to-date, in light of newly 

discovered sources (type mediation); and inferring 

new metadata to potentially identify additional query 

results (type inferencing).  

An experimental validation, using a real-world dataset 

in a context-aware application scenario, confirmed the 

utility of source metadata to reach the aforementioned 

goal; namely, balancing high data selectivity with 

memory/performance overhead. We found that Meta 

Cache, combined with the LPS (retrieval-unit) 

removal strategy, supplied the best performance. After 

an initial source indexing phase, which incurs a one-

time, noticeable cost in our experiments (but will 

usually be spread over time), we show realistic query 

performance and energy consumption. However, we 

also observed that this configuration incurs notable 

maintenance overhead after query execution; which is 

steep in some cases. Finally, type inferencing, and to a 

lesser extent type mediation, proved useful in 

improving data access by returning additional query 

results. However, the experiments showed they 

currently exhibit impractical performance and energy 

usage; mostly resulting from problematic cache 

maintenance times.  

Future work includes investigating how cache 

maintenance for source-based replacement, which 

involves persistently storing large amounts of data, 

can be made more efficient. Optimizations for our 

OWA features, including storing previously inferred 

types (e.g., using incremental reasoning to cope with 

dataset updates [43]), and analyzing the online dataset 

to determine the necessity for type mediation, are also 

considered future work. We further aim to consider 

issues such as the composition of datasets and the 

impact of network delays in future experiments. 

Finally, additional efforts are needed to fully support 

semantic data exploration in the “wild”. For instance, 

existing interlinks (i.e., owl:sameAs statements) can be 

leveraged to determine equivalence between two 

resources with different URIs; and existing ontology 

matching approaches can be applied to align 

heterogeneous ontologies. 
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