
A Mobile Query Service for Integrated Access to Large Numbers of Online

Semantic Web Data Sources

William Van Woensel (corresponding author)1
1 Dalhousie University

6050 University Avenue, Halifax NS B3H 4R2, Canada

William.Van.Woensel@Dal.Ca

From the Semantic Web’s inception, a number of

concurrent initiatives have given rise to multiple

segments: large semantic datasets, exposed by query

endpoints; online Semantic Web documents, in the

form of RDF files; and semantically annotated web

content (e.g., using RDFa), semantic sources in their

own right. In various mobile application scenarios,

online semantic data has proven to be useful. While

query endpoints are most commonly exploited, they

are mainly useful to expose large semantic datasets.

Alternatively, mobile RDF stores are utilized to query

local semantic data, but this requires the design-time

identification and replication of relevant data.

Instead, we present a mobile query service that

supports on-the-fly and integrated querying of

semantic data, originating from a largely unused

portion of the Semantic Web, comprising online RDF

files and semantics embedded in annotated webpages.

To that end, our solution performs dynamic

identification, retrieval and caching of query-relevant

semantic data. We explore several data identification

and caching alternatives, and investigate the utility of

source metadata in optimizing these tasks. Further, we

introduce a novel cache replacement strategy, fine-

tuned to the described query dataset, and include

explicit support for the Open World Assumption. An

extensive experimental validation evaluates the query

service and its alternative components.

Keywords: mobile computing; data integration; data

indexing; data caching; cache replacement; open

world assumption

1. Introduction

The Semantic Web has grown with leaps and bounds

over the last decade. Large data sources have been put

online in semantic format, and made interoperable via

initiatives such as Linked Data [1] (e.g., DBPedia,

LinkedGeoData). In addition, small online RDF files,

for instance capturing item descriptions (e.g., using

DCMI) or personal profiles (e.g., using FOAF), also

constitute a large part of the Semantic Web. Sindice

[2], a Semantic Web search engine, indexes ca. 708

million of these online sources. In a parallel evolution,

Sven Casteleyn2, 3
2 Universidad Jaime I

E-12006, Castellón de la Plana, Spain
3 Vrije Universiteit Brussel

B-1050, Brussels, Belgium

Sven.Casteleyn@uji.es

increased efforts are being made to make regular

(HTML) web content machine-readable as well,

catalyzed by the commitment of major search engines

to leverage such annotations for improving search

results [3]. This evolution has given rise to a new

Semantic Web segment, comprising web content

enhanced with semantic annotations (e.g., RDFa,

microdata). Since most of this annotated content can

be converted to RDF data (e.g., see [4]), such

annotated websites are semantic sources in their own

right. The Web Data Commons initiative [5] (2013)

found that ca. 26% of crawled webpages already

contain semantic annotations.

Via the Semantic Web, mobile clients gain access to a

wealth of online, freely available knowledge. Various

mobile computing domains currently leverage

semantic data, including augmented reality [6, 7],

recommender systems [8], location-aware [9, 10] and

context-aware systems [11, 12], mobile tourism [13]

and m-Health [14]. Typically, these systems access

online semantic data via SPARQL query endpoints.

Since they relieve mobile clients of computationally

intensive query resolution, query endpoints represent

an efficient option for mobile clients. On the other

hand, client-server roundtrips cause delays, and a poor

or unavailable network connection prevents query

resolution. Furthermore, setup and maintenance incur

costs, especially when scalability is desired, and

requires technical expertise and effort. Therefore, they

only present an acceptable cost-benefit ratio for large

RDF datasets.

Given recent improvements in mobile hardware,

coupled with the development of mobile query

engines, an alternative is the local querying of

semantic web data [12, 15, 16]. However, local

querying requires the manual, a priori replication of

relevant data, and gives rise to data freshness issues.

Moreover, some domains do not allow establishing

data relevance beforehand; e.g., in context-awareness,

relevance is determined by the mobile user's current

context, which is updated continuously and often in

unforeseeable ways. Due to nearly ubiquitous wireless

connectivity, opportunities currently exist to bypass

these drawbacks and dynamically retrieve relevant

semantic data.

We present a client-side, general-purpose mobile

query service, to study the performance and feasibility

of on-the-fly querying of a mainly untapped portion of

the Semantic Web, consisting of large amounts of

RDF files and annotated websites. By supplying

integrated query access over these sources, the query

service can resolve distributed queries, referencing

data from multiple sources. In particular, our solution

relies on the dynamic identification, retrieval and

caching of semantic data relevant to posed queries.

For this purpose, the query service includes two key

components; 1/ a source identification component, to

identify query-relevant sources in the online semantic

dataset, and 2/ a cache component, locally storing data

for later re-use. The query service relies on an existing

mobile query engine to locally query retrieved RDF

data. To reconcile fine-grained data selection with

reducing data processing overhead, these components

exploit the semantics of RDF(S)/OWL data.

Studying the efficiency and workability of such local,

client-side data collection and query support is

desirable for a variety of reasons. First, it is an

infrastructure-less solution, where no single party

needs to invest in highly scalable server infrastructure
or cloud subscriptions. Secondly, keeping data and

posed queries at client-side ensures privacy, e.g.,

especially in context-aware scenarios. Third, by

collecting data locally, it ensures query capability for

applications in conditions of poor or unreliable

network connection. Even with sufficient Internet

connectivity, local querying avoids client-server

roundtrips, which potentially decrease performance at

query time, which is most critical. Finally, it very well

supports application scenarios where semantic data

fragments are retrieved by other means than the

Internet (e.g., via Bluetooth connection, from high

capacity RFID tags).

This article builds on earlier work [17], where we

presented preliminary versions of the main query

service components. In this article, we present an

elaborated version of the query service, including

extensions that tackle previously identified

shortcomings. These include a novel cache removal

strategy called Least-Popular-Sources (LPS), tailored

to our particular situation where cached data originates

from online data files. Secondly, in order to fully

support integrated Semantic Web querying, we

incorporated the Semantic Web Open World

Assumption (OWA). Our experimental validation

evaluates the query service using a larger, real-world

dataset, focusing on the effects of these extensions on

performance and completeness of query results; while

at the same time studying boundaries of semantic web

technology on current mobile devices.

In the remainder of this article, we first discuss

challenges and requirements that arise in our particular

querying scenario, together with suitable solutions.

Next, an overview of the query service is presented,

and its general phases are discussed. We continue by

detailing the major query service components, as well

as the LPS strategy, and further discuss built-in

support for the Semantic Web OWA. Subsequently,

the query service is evaluated via an experimental

validation. We proceed with a review of the state of

the art and end with conclusions and future work.

2. Challenges and requirements

The goal of our mobile query service is to provide

transparent, integrated access to a currently untapped

part of the Semantic Web, comprising online RDF

files and annotated websites. In this mobile querying

scenario, a number of issues and challenges arise,

which we discuss below.

1. Mobile device restrictions: although mobile devices

are catching up with desktop and laptop computers,

they still have limitations regarding processing and

memory capacity (e.g., Android applies a maximum

heap depending on the device; currently, for devices

with 2 – 3 gigabyte of RAM, this limit is typically

128-192MB per Android 5.1 app). Furthermore,

battery power is limited, and restricts full and

continuous utilization of hardware resources.

2. Large query dataset: due to its scale, it is

impossible to consider the entire Semantic Web as

query dataset. Reflecting this, existing approaches to

integrated querying only focus on a (configured)

Semantic Web subset. However, our experiments (see

Section 7) show that querying even moderately sized

datasets is currently not feasible on mobile platforms

(e.g., the entire dataset needs to be kept in-memory for

fast querying).

3. Dynamic Semantic Web subset and volatile

semantic sources: typically, mobile applications only

require access to a specific Semantic Web subset;

ruling out the need to consider the entire Semantic

Web (see above). For instance, context-provisioning

systems [17] require access to semantic context

sources (e.g., place descriptions); while recommender

systems [8] require semantic descriptions of items to

be recommended. Often, these datasets are only

known at runtime and subject to change, which

necessitates allowing mobile apps to delineate and

dynamically extend their relevant Semantic Web

selection [18]. Furthermore, semantic sources

themselves may change over time. Depending on the

usage scenario, changes may be only occasional (e.g.,

product descriptions in e-commerce) or frequent (e.g.,

semantic Internet of Things). In any case, our query

service needs to be able to cope with a dynamic set of

potentially evolving sources.

4. Data captured in online, third-party files: in our

querying scenario, data items originate from third-

party online files. To gain access to their comprised

relevant data, such files need to be fully downloaded,

thus retrieving both relevant and irrelevant data. As

such, data-retrieval overhead is significantly

increased. We also note that connectivity

interruptions, not uncommon in mobile scenarios, will

result in the query dataset becoming inaccessible.

Taking into account these observed challenges, we

formulate the following requirements for efficiently

querying large sets of online semantic sources:

1. Minimizing resource usage: a local query service

should not strain mobile memory and processing

capacities, nor overly drain the device’s battery

(challenge 1). Since only a relatively limited amount

of fast, volatile memory is available (challenge 1), any

additional (volatile) memory requirements (e.g., to

store supporting index structures) need to be minimal.

Ideally, the additional data should fit in volatile

memory to avoid frequent swapping with persistent

storage, which unavoidably causes performance loss.

Secondly, as mentioned, the query service should

enable mobile applications to delineate and

dynamically extend or update their relevant Semantic

Web selection (challenge 3). This means any internal

data structures need to be updateable in real-time and

with minimal computational effort, while still

supporting acceptable query performance. Finally,

battery consumption should be kept within acceptable

bounds. For instance, this means reducing battery-

intensive operations as much as possible, such as

source downloads, which require WiFi or 3/4G radios,

and large-scale persistent data retrieval.

2. Minimizing query dataset: querying large datasets

causes performance problems, especially on mobile

platforms (challenge 2). Barring extraordinary mobile

hardware improvements in the near future, this implies

the query dataset should be kept as small as possible,

while still allowing complete query results to be

returned. Reducing the query dataset is also tackled in

other related approaches, such as query distribution

[19, 20] and context information systems [12, 21]. For

instance, query distribution systems typically focus on

ruling out datasets irrelevant to posed queries.

3. Minimizing online data downloads: retrieving

online query data is inherently expensive, both in time

and battery use (challenge 1), and constrained by

connectivity (challenge 4). Lack of control over online

data files prevents more efficient solutions at the

source side, such as selectively downloading only

relevant parts, or only re-downloading updated parts

in case of evolving data sources (challenge 3). As

such, data retrieval should be avoided where possible.

For instance, this can already be (partially) achieved

by reducing the query dataset (req. 2) and thus the

number of sources to (re-)download.

In order to meet these requirements, two solutions

present themselves:

- Fine-grained identification of relevant sources: by

identifying data relevant to application queries in a

fine-grained way, the query dataset can be greatly

reduced (req. 2), as well as the number of relevant

sources to download (req. 3). Such identification may

occur pro-actively, before any queries have been

posed; or re-actively, for each individual posed query.

For instance, domain-specific approaches exist [12,

21] that pro-actively and dynamically locate useful

Semantic Web data, in this case by correlating the

information to the user’s context. Since pro-active

data identification is not always possible (e.g., in case

relevance is determined by user input), it is not a

suitable choice for our general-purpose query service.

Therefore, we choose a re-active approach,

comparable to query distribution approaches [19, 20].

As an important advantage, this approach directly

supports any scenario encapsulated by application

queries (e.g., context-awareness, recommendation).

However, it also requires identification and source

retrieval tasks to occur during query resolution,

increasing total resolution times. In any case, efficient

identification can be supported by indexing source

data on-the-fly, as the mobile application delineates its

relevant Semantic Web subset. As indicated by req. 3,

download overhead can already be mitigated by fine-

grained data selection; as well as by applying the

second solution, Locally caching data.

- Locally caching data: by locally caching online data,

fewer sources need to be (re-)downloaded to serve a

posed query (req. 3). Using caching, the query

resolution time is decreased by avoiding source re-

downloads; thus reducing the drawbacks introduced

by pro-active source selection (see first solution). By

further allowing cached data to be retrieved with high-

selectivity, the query dataset can be further reduced

(req. 2). When applying caching, storage footprints are

kept in check by applying replacement policies (a.k.a.

removal strategies). In mobile settings, the need for

caching is reflected in related work [22, 23]. To avoid

cache invalidity caused by evolving sources, a flexible

cache validation strategy needs to be deployed, which

accommodate datasets evolving at different rates and

avoids unnecessary data (re-)downloads.

Given our first requirement of minimizing resource

usage (req. 1), our main goal is to find a good balance

between the proposed fine-grained data retrieval,

afforded by effective data indexing and local caching;

and the memory and computational overhead this

implies, e.g., resulting from supporting data structures.

As only a well-balanced solution will provide good

query resolution times, our research seeks to

harmonize these counteracting concerns.

3. General approach

The query service implements the two proposed

solutions, namely identifying relevant online sources

and locally caching data, via two key components.

Importantly, both components rely on source

metadata, which includes found predicates and

resource types, to achieve their task. The source

identification component, called the Source Index

Model (SIM), indexes online source metadata from

online semantic sources, with the goal of enabling

fine-grained source identification. The cache

component locally caches downloaded source data and

has two variant implementations, called Source

Cache and Meta Cache. Each variant presents a

different cache organization: Source Cache organizes

cached data around origin source, while Meta Cache

arranges the data based on shared source metadata.

Multiple SIM variants were developed as well, each

keeping increasing amounts of metadata. By

developing multiple component variants, we aim to

study the utility of the aforementioned metadata in

achieving our goal; namely, reconciling fine-grained

data retrieval with reduced memory and processing

overhead (see Section 2). Below, we discuss the

rationale behind our focus on source metadata.

Source metadata, including predicates and resource

types, can be easily and efficiently retrieved from

semantic sources. Compared to instance-level

information, as indexed by RDF stores or certain

query-distribution approaches (see related work,

Section 8), extracting this metadata is less processing-

intensive; while much less data needs to be indexed as

well, decreasing memory usage. At the same time, we

hypothesize that source metadata still allows for fine-

grained data retrieval, which is confirmed by our

experiments (see Section 7).

Figure 1. Overview of the components and phases of the mobile query service.

Clearly, before it can be utilized for source

identification and caching, such source metadata needs

to be present in 1/ online sources and 2/ posed queries.

The real-world dataset gathered for our experimental

evaluation, extracted from a range of existing online

sources, confirms that online sources typically specify

subject/object types to describe contained resources.

Furthermore, semantic queries often specify concrete

predicates and constrain subject/object types of query

variables. Both these observations are reflected in the

related domain of semantic query distribution, where

approaches index RDF predicates [19, 24] and types

[20] to identify query-relevant datasets.

However, indexing any kind of RDF data inevitably

raises problems resulting from the Semantic Web’s

Open World Assumption (OWA) and its inherently

distributed nature. Due to its lack of negation-as-

failure, the OWA implies that no single source is self-

contained or complete; other sources can thus specify

additional information for each resource. In our case,

this means multiple different resource types can be

specified across different, distributed online sources,

potentially leading to inconsistent indexed metadata.

We elaborate on this issue in Section 6.

Figure 1 shows an overview of the mobile query

service components and phases. The query service

relies on an existing mobile query engine (e.g.,

AndroJena [25], RDF On The Go [26]) to locally

query the downloaded semantic data. Below, we

discuss each phase in more detail.

The Source Indexing phase is triggered when the

client (i.e., mobile app utilizing the query service)

passes the location of an a priori known or newly

discovered online source (a.1), allowing the app to

outline its relevant portion of the Semantic Web. For

applications where the required dataset is known

beforehand, this may occur in bulk [8] whereby

updates may be issued later on; in other cases, this will

happen gradually and in real-time [17]. In our

experimental evaluation (see Section 7), the SCOUT

mobile context-provisioning framework [11] acts as

client, passing online sources describing the user’s

physical environment as they are discovered. Other

client apps can also be envisioned, including any type

of context- or environment-aware application (e.g.,

mobile tourism applications, such as restaurant

finders, museum guides, city tour apps, etc.; m-

commerce application, such as geo-fenced coupon

apps, shopping comparison apps, real-estate apps,

etc.), and other applications scenarios (e.g., mobile

recommender systems, such as music or movie

recommenders; aggregator apps, such as news or

search aggregators; or social-networking-based

applications, such as dating or travel apps). Depending

on the concrete scenario, the delineation and dynamic

expansion of the relevant dataset may also come in

different forms: discoverable (i.e., in context-aware

scenarios), computable (i.e., as a result of an on the fly

crawling process), or previously known.

Upon receiving an online source reference (a.1), the

Source Handler contacts the Source Downloader to

retrieve the source data (a.2). In addition to online

RDF files, the Source Downloader also supports

semantically annotated websites, automatically

extracting their annotations as RDF triples (currently,

RDFa is supported). The retrieved source data is then

passed to the Source Analyzer (a.3), which extracts

the required source metadata, including predicates and

resource types. The Source Analyzer can optionally

employ the Ontology Manager to infer additional

metadata, based on axioms from well-known

ontologies (a.4). After extraction, the source metadata

is passed to the Source Index Model (SIM) for

indexing (a.5), and the downloaded source data is

passed to the cache component for storage (a.6).

The Data Query phase commences when the client

poses a query (b.1). The given query is first analyzed

by the Query Analyzer (b.2), which extracts query

metadata as search constraints. This query metadata

reflects the extracted source metadata, and comprises

concrete predicates and type constraints. As before,

the Query Analyzer may utilize the Ontology Manager

to infer additional query metadata (b.3). The Query

Handler then passes the extracted search constraints to

the SIM, which returns references to online sources

containing relevant data (b.4). Given the identified

source references (and extracted search constraints1),

the cache component is contacted (b.5), returning

query-relevant source data locally available in the

cache. Any sources not found in the cache, due to

applied removal strategies (in case storage was full),

are re-downloaded by the Source Downloader (b.6).

Afterwards, an existing mobile query engine executes

the query (b.7) over the collected query dataset, after

which the query results are returned to the client (b.8).

At the end of the phase, the cache is updated with the

(re-)downloaded source data (b.9).

As mentioned, the Source Indexing and Data Query

phases are respectively triggered when indexing an

online source and executing an application query. In

1 Meta Cache relies on the search constraints for retrieving

cached data (see Section 5.1.2).

case new sources are discovered dynamically, they are

thus likely to occur intermittently at runtime. The

query service is implemented for the Android platform

(version 4.1.2). The AndroJena library supplies the

mobile query engine, though any other mobile query

engine can be used.

Below, we elaborate on the concrete implementations

of our solutions, namely identifying online sources

and caching source data.

4. Identifying relevant online sources

By indexing online source data, query-relevant

sources can be identified during querying. In

particular, the Source Index Model (SIM) focuses on

source metadata, including predicates and resource

types, resulting in a compact index that is quick to

update and maintain, while still ensuring high source

selectivity. Given analogous metadata extracted from

queries, the SIM utilizes the indexed metadata to

identify query-relevant sources in a fine-grained way.

To validate the effectiveness of source metadata in

reconciling data selectivity and overhead, we

developed 3 SIM variants, each keeping increasing

amounts of metadata: SIM1, only storing predicates,

SIM2, keeping predicates and subject types, and

SIM3, keeping predicates, subject and object types.

Below, we shortly elaborate on the index structure

employed by the SIM. Then, we discuss the source

and query analysis and source identification processes.

4.1 Source Index Model

The Source Index Model is implemented using a

multi-level index; a type of index used traditionally in

databases, but in this case specifically tailored for

source identification based on source meta-data. In the

related work section (see Section 8), we discuss other

indexing structures employed by related approaches.

Each index level indexes on a particular metadata part

(i.e., predicates, subject or object type), and keeps

maps that connect metadata parts occuring together in

source triples. In particular, the first-level map indexes

on predicates, whereby each entry links to a second-

level map keeping subject types. Each subject type

further links to a map keeping object types, each of

which finally points to a list of URLs. Each linked

combination of predicate, subject and object type (i.e.,

path through the multi-level index) indicates that the

particular metadata combination occur together in one

or more triples from the indicated sources. Given that

sources may contain triples without types, an <empty>

map entry may be added as well. For instance, a

predicate entry linking to an <empty> subject type and

<empty> object type entry indicates the predicate was

found without subject/object types in the indicated

sources.

To reduce the size of the SIM, dictionary encoding is

applied (similar to RDF stores [27, 28]). This

encoding process is fine-tuned towards RDF terms,

and maps namespaces (indicating a set of related

resources) to an integer identifier, while local names

(indicating the concept or item) are kept as character

arrays. We found this resulted in the largest size

reduction, as namespaces are repeated across data

sources much more often than the local names.

4.2 Source Analysis

The Source Analyzer extracts metadata for each

retrieved online source, including predicates, subject

and object types. Initially, this extraction was realized

via predefined SPARQL extraction queries [17, 29].

However, this led to huge processing overheads when

dealing with real-world sources, which contained large

amounts of distinct metadata. We therefore optimized

the metadata extraction process by dynamically

parsing RDF files in N-TRIPLE format (which are

straightforward to parse), processing the RDF line-

per-line and returning new RDF metadata statements

as requested by the Source Analyzer. This way, we

avoid an expensive RDF graph creation (performance

and memory-wise) and querying step. This resulted in

an average performance gain of factor 10.

4.3 Query Analysis

The Query Analyzer analyzes each triple pattern in a

query’s WHERE, OPTIONAL and UNION clauses to

retrieve query metadata, including predicates and

resource types, which can then be matched to indexed

source metadata. FILTER clauses are further scanned

for functions indicating equivalence between variables

and resources (i.e., sameTerm function), which may

result in additional concrete predicates and types.

SELECT ?place

WHERE {

?person rdf:type foaf:Person .

?person foaf:based_near ?place .

?place rdf:type rest:Restaurant .

}

Code Listing 1. Example SPARQL query and extracted

triple patterns

Code Listing 1 shows an example SPARQL query,

where the underlined triple patterns supply type

constraints for the triple pattern in bold. The following

query metadata combination, or search constraint, is

extracted for Code Listing 1: foaf:based_near –

foaf:Person – rest:Restaurant.

The Query Analyzer utilizes the SPARQL Parser

library [30] to parse SPARQL queries, and then visits

the parsed Abstract Syntax Tree (AST) to extract the

search constraints.

4.3 Source Identification Process

To identify query-relevant sources, search contraints

extracted from queries are matched with metadata

from online sources. In particular, the SIM follows

each individual search constraint as a path through the

multi-level index. Respectively using the predicate,

subject and object type as keys, the predicate index

returns a subject type index (predicate key), which in

turn leads to an object type index (subject type key).

Finally, this latter index returns a list of source URLs

(object type key), each adhering to the given search

constraint. By performing this step for each separate

search constraint, as opposed to the entire query,

sources can be identified for queries that are not

solvable by any single source, but require a

combination of sources; thus supplying full integrated

query access across online sources.

In case subject/object variables of a triple pattern have

multiple type restrictions (e.g., foaf:Person,

dcmi:Agent), a data source is only relevant for the

triple pattern if it specifies all given types for that

variable. To realize this, separate search constraints

are extracted for each type, and an index search is

performed for each constraint. Afterwards, the

intersection of the found sources is taken, ensuring the

sources each adhere to the extracted constraints.

Similar to sources, some queries may lack certain

metadata, including types and predicates. In this case,

missing metadata indicates no constraint is given on

the missing metadata part(s) (e.g., subject type). This

means the search at the particular index level (e.g.,

subject type index) is unconstrained, and all entries at

the particular index level need to be followed (e.g.,

subject type index). Afterwards, the union of all found

sources is taken, denoting all sources that fulfil the

(partial) constraint. Note that the <empty> entry,

indicating a lack of particular source metadata (e.g.,

subject type), only matches if the search is

unconstrained at that level.

By considering each search constraint separately, as

well as supporting both missing source and query

metadata, all sources containing query-relevant data

are returned. However, full completeness can only be

guaranteed if the Open World Assumption is also

considered. We revisit this issue in Section 6.

5. Caching source data

Locally caching source data serves to reduce the

number of source (re-)downloads required to serve a

posed query. Importantly, cached data should be

retrieved with high selectivity to keep the query

dataset small, while additional data structures (e.g.,

indices) should only take up limited memory space

and be quick to update and maintain. To study the

extent to which source metadata can balance these two

concerns, we consider multiple component variants:

Source Cache, which arranges the cache according to

origin source; and Meta Cache, organizing cached

data according to shared metadata. In Section 5.1, we

elaborate on both cache organizations, and weigh their

respective advantages and drawbacks.

To manage the occupied memory and storage space,

replacement policies (or removal strategies) identify

data to be moved to persistent storage or removed

entirely. We discuss suitable removal strategies, and

detail a novel removal strategy called Least-Popular-

Sources, in Section 5.2. Finally, a cache validity

strategy is applied to ensure the freshness of the cache

(Section 5.3). Both removal and cache validity

strategies are tailored to our particular setting, where

cached data originates from online data files.

5.1 Cache organizations

A cache can be organized in different ways,

influencing the fine-graininess of cached data

retrieval, as well as the maintenance costs and

memory overhead. Cached data is indexed, stored and

retrieved per unit of data called the cache unit,

whereby the content of the unit depends on the

particular cache organization.

5.1.1 Source Cache

In Source Cache, an individual cache unit contains all

data from a particular online source; in other words,

data is indexed, stored and retrieved per origin source.

This is a natural organization in our setting, where

data originates from small online sources. A search

index (implemented as a hash table) is kept on source

URLs, each of which uniquely identifies a cache unit.

To obtain the URLs of cached, query-relevant sources,

the Source Cache is deployed in combination with the

SIM (see Section 4).

Since only one index is kept with a relatively small

amount of entries, this cache organization results in

only minimal memory overhead, while the SIM

memory impact is limited as well. Cache creation and

updating is also efficient, since each downloaded

source is directly stored as a cache unit. On the other

hand, Source Cache does not support fine-grained data

retrieval, since a retrieved cache unit comprises the

entire source instead of only its relevant triples. Our

experimental evaluation (Section 7) shows that this

leads to high cache retrieval overheads during query

resolution. As indicated by req. 3, Minimizing online

data downloads, course-grained retrieval is

unavoidable when dealing with online sources.

However, this can be improved upon when dealing

with local data, as shown by Meta Cache.

5.1.2 Meta Cache

In the Meta Cache organization, a single cache unit

comprises all triples sharing the same metadata

combination (i.e., predicate and subject, object type),

irrespective or their origin source. By keeping search

indices on predicates, subject and object types,

relevant cache units can be quickly identified, given a

particular query metadata combination.

In this case, a retrieved cache unit comprises only

triples matching the query’s search constraints,

resulting in much more fine-grained retrieval.

However, this comes with additional memory and

processing overhead. Firstly, the cache update time is

increased, since metadata from each source triple

needs to be extracted, and added to three separate

indices. Secondly, storing triples from a single online

source potentially requires creating or updating

multiple cache units, depending on their metadata.

Regarding memory usage, three indices (implemented

using hashtables) are kept with considerably more

entries compared to Source Cache, since the number

of distinct predicates and types usually exceeds the

number of source URLs. To enable validity checking,

the origin URL of each cached triple also needs to be

kept (see Section 5.3). In an effort to reduce memory

and storage space, type statements (i.e., with predicate

rdf:type) are not stored, but automatically generated

based on the metadata associated with retrieved cache

units2, and then inserted in the final query dataset. At

the same time, we note that due to its focus on

schema-level information, Meta Cache still has a

much lower memory and update overhead compared

to other indexing approaches (see Section 8).

Additionally, our experimental evaluation shows that

this overhead is still reasonable, especially when

considering the resulting improvement in query

resolution performance.

2 E.g., for each triple “X Y Z .” in cache unit with metadata

<pred1, subjType1>, the type statement “X rdf:type

subjType1” is generated.

In addition, Meta Cache keeps information on

“missing” cached data, previously removed by cache

removal strategies (see next section). In particular, it

keeps the metadata combination associated with the

removed data, together with references to their origin

sources; and indexes this information using the

aforementioned indices. Consequently, a single cache

lookup may return relevant cached data as well as

references to online sources that need to be re-

downloaded. By integrating this functionality in the

Meta Cache, we rule out the need for a separate source

identification component, avoiding its associated

overhead. As a result, the Meta Cache implements

both online source identification and local caching.

Finally, we note that, analogous to the SIM, both

Source and Meta cache apply dictionary encoding to

reduce memory and storage space.

5.2 Removal Strategy

In case of limited volatile and persistent storage, a

removal strategy (or replacement policy) is applied to

identify data to be moved from volatile to persistent

storage or removed entirely, whenever volatile or

persistent memory becomes full, respectively. For this

purpose, well-known strategies such as Least-

Recently-Used (LRU) or Least-Frequently-Used

(LFU) may be employed. A number of domain-

specific removal strategies exist as well, which are

discussed in our related work section (see Section 8).

However, such existing strategies have the potential to

cause major performance issues for Meta Cache. This

is a result of the specific organization of Meta Cache,

which groups source data based on shared metadata

instead of origin source. As a result, cache units likely

contain data originating from multiple sources.

Whenever a removed cache unit is referenced during

query resolution (i.e., a cache miss), this means all

sources containing the missing metadata combination

need to be fully re-downloaded, and the relevant data

items extracted. This issue has its roots in our

particular setting, where data is captured in online data

files (see Section 2), and will have negative effects for

any cache organization different from origin source.

Previously, we found that this incurs a serious

performance overhead during query resolution [17].

To allow for efficient query resolution when utilizing

Meta Cache, we need to reduce the occurrence of this

problem. For this purpose, we present a novel cache

removal strategy called Least Popular Sources (LPS),

which we discuss below.

5.2.1 Least-Popular-Sources

Instead of removing single cache units, the LPS

strategy removes all data originating from a particular

source, potentially across cache units3. By removing

data on a per-source level, cache misses resulting from

a single removal only require a single source to be re-

downloaded, instead of multiple sources. On the other

hand, the probability of cache misses increases as

well, as one source removal influences all cache units

with the source’s data. This is illustrated in Figure 2;

by removing source A, any cache miss only incurs one

source re-download; although there is now a 3/4

chance that accessing a cache unit incurs a cache miss.

Consequently, the goal of LPS is to balance 1/ the

number of source re-downloads and 2/ the probability

of cache misses. To that end, LPS considers the

“popularity” of cached sources when identifying

sources to be stored persistently or removed. As

explained below, both the popularity of its source data

and metadata is considered.

The first factor, source-data popularity, refers to the

degree to which the source’s data is spread across the

cache, indicated by the number of cache units

containing the source’s data (i.e., the source data’s

“popularity”). As such, it marks the amount of cache

units that will be affected by removing the source’s

data. By reducing the amount of cache units with

missing data, we can decrease the probability of cache

misses later on. In Figure 2, source A has the highest

value for this factor, since its data is spread across 3

cache units.

The second factor, source-metadata popularity,

reflects the number of other online sources that

contain the source’s metadata (i.e., the source

metadata’s “popularity”). Since cache units group data

sharing the same metadata, origin sources

participating in the same cache unit share (at least) this

metadata. In case a cache unit has many origin

sources, it will thus contribute to a high extent to the

source-metadata popularity of each associated source.

Applying this factor reduces the chance that many of

these sources will be removed; thereby decreasing the

potential number of source re-downloads on a cache

miss. This is illustrated in Figure 2, where sources B,

C, D and E each have three other sources keeping the

same metadata (indicated by their participation in

cache unit 1). As a result, these sources have a large

value for this factor, reducing the likelihood that many

of them will be removed. This means that a cache

miss, resulting from accessing cache unit 1, will lead

to only a minimal number of source re-downloads.

3 Other sources’ data in these cache units is hereby retained.

Figure 2. Example application of LPS.

In practice, these two factors allow us to cope with

sources of different sizes. Small sources will typically

be spread across less cache units (as they typically

contain less distinct combinations of metadata), and

thus have a smaller value for the source-data

popularity factor. Due to their smaller size, a

comparably large number of them also needs to be

removed to clear the same amount of storage space

(compared to when removing a larger source). For

instance, in Figure 2, clearing storage space could

involve removing the (small) sources C, D and E,

resulting in 3 source re-downloads when accessing

cache unit 1. However, since this cache unit contains a

large amount of sources, the sources’ associated value

for the source-metadata factor is larger as well. This

reduces the likelihood that many of these sources will

be removed; thus decreasing the probability of many

source re-downloads on a cache miss.

As a final factor, LPS can take the source’s download

cost into account, whereby sources that have long

download times are less likely to be removed. Formula

1 shows the removal value calculation for source s,

where f1 stands for source-data popularity, f2 for

source-metadata popularity, and f3 for download cost

(in seconds)4. Due to the nature of f1 and f2, this

calculation is performed each time cache units are

created, updated or removed. Different factor weights

may be set, respectively represented by α, β and γ. In

our experimental section, we tested different weights

to find an optimal balance between these factors in our

dataset (see Section 7).

LPS(s) = αf1 + βf2 + γf3

Formula 1. LSP removal value calculation.

We note that LPS was specifically designed to cope

with the difficulties of cache removal in settings

4 A higher result value means the source is less likely to be

removed.

where data originates from online files. As such, it

does not consider any particular locality of reference,

as is typically the case for removal strategies (e.g.,

LRU, or Furthest-Away-Removal (FAR) [23]). Since

our query service is general-purpose, it is also not

possible to make a priori assumptions on likeliness of

referral. Finally, we also note that LPS makes

removals more complex and costly, compared to

regular removal strategies. In our experimental

evaluation (see Section 7), we investigate how these

overheads weigh against the potential advantages.

In the section below, we elaborate on implications of

LPS on cache architecture.

5.2.2 Decoupling retrieval, storage, removal units

Until now, we indicated that cached data is retrieved,

stored and removed per cache unit (see Section 5.1).

To support removal strategies such as LPS, where data

is removed via a different unit (e.g., origin source), we

need to further distinguish between a retrieval,

removal and storage unit. A retrieval unit keeps

(pointers to) the data retrieved when accessing the

cache, while a removal unit keeps (pointers to) the

data that is removed or persistently stored due to a

memory management operation. A storage unit

contains the actual cached data (in-memory/

persistent), to which retrieval and removal units point.

In other words, retrieval and storage units are indexes

over the actual data, stored as storage units. This

allows both efficient retrieval of query data, as well as

efficient removal due to cache maintenance.

In Meta Cache, the retrieval unit points to all data

sharing the same metadata, and thus corresponds to

the original notion of a “cache unit”. When applying

the LPS strategy, the removal unit will point to all data

originating from a particular source. To accommodate

this, the storage unit needs to be more fine-grained,

keeping data from a particular source that share the

same metadata. This allows removal units to keep

pointers to units only keeping their associated source

data; and retrieval units towards units only storing the

data matching their metadata combination. A memory

management operation can thus selectively remove

(from volatile/persistent memory) only the data

originating from a particular online source5; while all

data adhering to a given metadata combination can

still be retrieved.

Finally, we note that when moving a storage unit from

volatile to persistent storage, multiple options exist to

5 Removal of storage units is hereby propagated to their

respective retrieval units, to update their internal pointers.

store the source data on the file system6. We found

that the straightforward option, namely saving each

storage unit to a single file, leads to an impractically

large number of files (i.e., # distinct metadata

combinations X # origin sources). Instead, grouping

the persistent data per removal or retrieval unit

reduces the number of data files, and has other

advantages as well. Grouping per removal unit

optimizes memory management (i.e., storage,

removal), since only a single file is affected. By

grouping per retrieval unit, data retrieval is optimized,

since a single retrieval only requires accessing one

data file. In our experimental section (see Section 7),

we discuss on the effects of these data grouping

methods on performance.

5.3 Implementation

In this section, we discuss implementation issues

related to the cache components.

- Representing in-memory source data: when

assembling the final dataset for querying, an

AndroJena RDF graph needs to be created on which

the query is executed. Loading this query graph with

separate data strings from each retrieved cache unit

incurs a performance overhead. This was especially

the case for Source Cache, with its coarse-grained

cached data retrieval. Therefore, in Source Cache,

each in-memory cache unit keeps its data in an

AndroJena RDF graph. By optimizing the AndroJena

library to efficiently combine AndroJena graphs, the

final data assembly became much more efficient.

On the other hand, since the number of cache units in

Meta Cache is comparably much higher (due to the

higher amount of distinct metadata combinations), we

found that keeping separate AndroJena graphs per

cache unit caused too much memory overhead7.

Therefore, cache units in Meta Cache still keep their

data as a string.

- Storage management: in order to manage volatile

and persistent storage space, which involves

persistently storing or removing cached data when

storage limits are exceeded, cached data sizes need to

be accurately measured. Since no effective way to

estimate runtime memory usage is available in

Android, this is currently done by estimating source

data sizes, which does not include implementation-

specific data structures (e.g., Java object overheads).

In our experiments, we compare the accuracy of this

6 Data is stored directly on the file system instead of a

database, which would introduce unnecessary overhead.
7 E.g., due to the internal indices used by AndroJena (see

related work).

estimation with the actual memory usage, measured

by analyzing Java heap dumps8.

5.3 Cache validity

Various invalidation strategies exist to detect invalid,

out-of-date information in client-server systems and

mobile scenarios (see related work, Section 8).

However, such strategies cannot be applied in our

setting, where cached data does not originate from

dedicated servers but from online files, stored on

multiple, general-purpose web servers.

To accommodate our setting, we re-use web servers’

existing functionality by relying on the cache support

provided by the HTTP protocol (e.g., also used by

proxy caches). For each retrieved source, the last

download time and expiration time (indicated by the

“Expires” header field), if available, is kept. If no

expiration time is given, a configurable maximum life

span is assigned to the source; which depends on the

volatility of the dataset, and data freshness

requirements of the application. Based on these two

criteria, the system may also be configured to let the

max. life span take precedence over the source expiry

time, meaning the same life span will be assigned to

all sources (e.g., in case data freshness is less

important, or online sources are expected to evolve

very frequently regardless of expiry times). To support

timely validity checking, an ordered list of life spans /

expiry times is kept by the system. In case the

currently smallest time span has been exceeded, a

background process checks the source’s validity. For

optimisation purposes, in case a number of sequential

time spans are sufficiently similar, they are grouped to

invoke the background process only once (cfr.

Android AlarmManager API9). Checking source

validity involves sending a conditional GET request to

the source’s web server, with its last download time

filled into the “Last-Modified-Since” header field. If

no change occurred, a 304 Not Modified header is

returned, yielding only minimal data transfer

overhead. Else, the updated source data is returned

and used to update the cache.

6. The Semantic Web as an Distributed System,

supporting the Open World Assumption

The vision of the Semantic Web is that of an open,

interlinked web of machine-readable data, where

semantic sources may publish information on anything

identifiable by a resource URI. To that end, Semantic

8 Due to their overhead, it is not possible to use heap dump

analysis tools at runtime.
9 https://developer.android.com/training/scheduling/alarms.html

Web technology implements the Open World

Assumption (OWA) which, contrary to the Closed

World Assumption, states that no assumptions can be

made on non-explicitly stated knowledge. As such, no

data source may be assumed to be comprehensive and

self-contained, and due to the distributed nature of the

Semantic Web, additional information on resources,

missing from the particular source, may be found in

any other online source. Data sources are thus

transformed from closed data silos to collaborating

parties – each contributing their own data to the online

Semantic Web knowledge base.

By supporting the distributed nature of the Semantic

Web and the OWA assumption, our query service can

provide fully integrated access to the Semantic Web.

Supplying this support has two important

consequences, which we discuss next.

6.1 Distributed type constraints

As mentioned, the OWA implies semantic sources are

not self-contained, which also means that their

comprised RDF resources may be described by other

online sources. Regarding the query service, this

means that new sources may specify different types

for already processed data; possibly leading to

previously indexed source metadata to become out-of-

date. Consequently, resource types should ideally be

tracked across online sources, whereby appropriate

action is taken when incomplete source metadata is

found. In doing so, we guarantee that all relevant

query results are returned, for any online data

composition. We call this process type mediation.

In particular, type mediation is applied in two cases;

when new sources specify additional types for

previously found resources, and when new sources

specify less types than known for the comprised

resources. In the former case, internal indices should

be updated; and in the latter case, the extracted source

metadata should be extended with the missing types.

To keep track of resource types across sources, we

rely on a resource index (implemented as a hashtable)

linking found resources to their known types.

We note that online sources cannot be directly updated

with the missing types, as data in our setting is

captured in online files not under our control. As such,

type mediation needs to be applied on new sources

during the Source Indexing phase; as well as during

the Data Query phase, on re-downloaded sources (due

to cache misses) on which type mediation had already

been applied. We finally note that, due to the different

internal structures in the SIM and cache components,

the type mediation process and resource index differ

for these components and their variants. For Meta

Cache, we note that type mediation often involves

loading previously cached data into memory, to

update their associated metadata. As such, type

mediation process will have a large impact on removal

times, as the loaded cache units need to be moved

back to persistent storage afterwards. In the

experimental section (see Section 7), we study the

effects of each type mediation process and index on

performance, memory and data access.

Type mediation is a resource-intensive process, given

the resource index and need for updating internal

indices. Consequently, it contradicts req. 1,

Minimizing resource usage. At the same time, we

point out this resource index still consumes less

memory compared to e.g., RDF stores, which often

utilize multiple indexes to support fast querying (e.g.,

3 for Androjena; and 6 for YARS [28] and HexaStore

[27]). We also note that in some cases, type mediation

may be safely disabled. By analyzing the online

dataset, the existence of inconsistent typing can be

ruled out. Alternatively, when there is control over the

online sources (e.g., in closed-world systems), the

source data can be automatically supplemented with

missing resource types, ensuring consistent typing.

Some applications also prefer fast, partial results over

guaranteed completeness, especially in a Web setting

(e.g., [31, 32]). Finally, in the real-world dataset used

in our experiments, we observed that only a limited

number of typing issues occurred (see Section 7).

It can be noted that related approaches integrating

Semantic Web data suffer this problem, yet to the best

of our knowledge, they do not consider it. For

instance, the SemWIQ [20] and DARQ [19] query

distribution systems do not update indexed resource

types based on types found in other sources. As a

result, related state of the art corresponds to the case

where type mediation is disabled in our query service.

6.2 Inferring new types

A second important consequence of the Semantic Web

OWA is that it allows new statements to be inferred,

based on logical axioms specified in RDF schema

definitions or OWL ontologies. For example, an

ontology may contain property domain/range

restrictions, which constrain the types of related

subject/object resources. In case these type constraints

are not explicitly stated in the RDF data, they may be

inferred. This process is called type inferencing, and is

supported by most RDF stores. Typically, these stores

allow enabling/disabling inferencing to suit

application needs and improve performance.

Analogously, our query service supports type

inferencing and allows to enable/disable it. When

enabled, type inferencing is applied during the Source

Indexing phase to enrich extracted source metadata;

and during the Data Query phase, to enhance the

extracted search constraints of posed queries.

For this purpose, the Source Indexing phase is

extended with the Ontology Manager (see Figure 1).

This component provides inferencing support based

on axioms from online schema definitions and

ontologies. The Source Analyzer, responsible for

extracting source metadata, employs the Ontology

Manager to retrieve each found predicate’s

domain/range types, optionally including their

subtypes. If encountered, these inferred types are

added to the extracted source metadata10, allowing

more query-relevant data to be identified. Consider the

following RDF snippet in Code 2 (namespaces

omitted for brevity):

 vub:thinker_in_all_states

 rdfs:label “Thinker in all states”.

 vub:thinker_in_all_states

 geo:xyCoordinates

 ”50.82242202758789,4.393936634063721”.

Code 2. Example RDF snippet to illustrate type inferencing

during Source Indexing.

The Source Analyzer contacts the Ontology Manager

to obtain the domain type restriction of the

geo:xyCoordinates predicate (specified in the

GeoFeatures [33] ontology), namely

geo:SpatialEntity; and subsequently extends the

source metadata with this inferred type. Whenever a

query is posed requesting all labels of

geo:SpatialEntity resources, the

vub:thinker_in_all_states resource will now be

returned as a result; which would not have been the

case without type inferencing.

During the Data Query phase, the Query Analyzer

component, responsible for extracting query search

constraints, leverages the same ontological

knowledge. By utilizing the Ontology Manager, the

Query Analyzer obtains each concrete predicate’s

domain and range types (possibly accompanied by

their subtypes), and uses them to enhance the search

constraints. In doing so, more irrelevant source data

can be ruled out. Code 3 shows a query containing two

triple patterns (namespaces omitted for brevity):

 ?restaurant lgd:cuisine ?cuisine .

 ?restaurant rdfs:label ?label .

10 If inferred types are already materialized in the online

dataset, type inferencing in this phase can be skipped.

Code 3. Example query to illustrate type inferencing during

the Data Query phase.

Using the Ontology Manager, the Query Analyzer

retrieves the domain type restriction of the lgd:cuisine

predicate (as specified in the LGD ontology [34]),

namely lgd:Restaurant, and adds it as a subject type to

the two extracted search constraints. Since no type

constraints were explicitly given, and rdfs:label is a

much-occurring predicate, adding the extra inferenced

lgd:Restaurant type has to potential to drastically

improve selectivity.

To implement the two lightweight inferencing tasks

mentioned above, we apply two mechanisms:

 To support retrieving all super types of a given

type, we keep a hierarchy of Java objects,

combined with a (hash) map linking type URIs to

objects in the hierarchy;

 To retrieve all domain/range types of a given

predicate, we keep an additional (hash) multimap

linking predicates to their domain/range types.

Per source analysis, we additionally keep a cache of

inferred domains/ranges and supertypes, as these are

typically re-used inside a source. We found that these

two straightforward mechanisms, combined with a

temporary cache, greatly optimizate performance;

compared to issuing queries on-the-fly on the ontology

RDF graph to obtain the same information.

We note that, as for type mediation, type inferencing

needs to be re-applied on re-downloaded sources

during the Data Query phase; as it was not possible to

update the online sources with the inferred types.

Further, due to the increased size of the cache units,

we note that removal times will be influenced as well.

7. Experimental evaluation

This section presents an elaborate experimental

evaluation of the query service and its components. In

these experiments, we apply a context-aware scenario,

where the SCOUT mobile context-provisioning

framework [11] plays the role of client. We extracted

real-world semantic data sources from existing

datasets (e.g., LinkedGeoData, DBPedia) to serve as

an online experiment dataset.

These experiments focus on the difference aspects of

the query service, and investigate:

- The utility of different amounts of source metadata

in balancing fine-graininess of data retrieval with

memory and processing requirements . This is

studied for online source identification (SIM;

Section 7.2) and local caching (Section 7.3).

- The impact of the novel Least-Popular-Sources

strategy, with different configurations, on cache

composition and query performance (section 7.4);

- The Open World Assumption features, namely

type inferencing and mediation, and their positive

effects on data access vs. memory and

performance penalties (section 7.5).

All resources related to the experiments, including

dataset and queries, can be found on [35] (queries are

also included in Appendix A). Before going into detail

on the experiments, we first describe the experiment

setup and methodology below.

7.1 Experiment setup

This section outlines the setup for our experiments.

7.1.1 Device

The experiments were performed on an LG Nexus 5

(model LG-D820), with 2.26 GHz Quad-Core

Processor, 2Gb RAM and 32Gb storage. We note that

this device also runs the latest Android OS version

(Android 5.1.1, Lollipop). Android apps obtain a

maximum Java heap space of 192Mb.

7.1.2 Dataset

The semantic dataset used in the experiments consists

of 5000 data sources, and has a total size of 526Mb;

with an average size of ca. 107Kb, median size of

13Kb and standard deviation of 322Kb. The data

sources were assumed not to change during the

experiments, and were distributed across four different

remote web servers.

The sources were extracted from 8 online datasets,

some referenced on the Billion Triples Challenge

(BTC) 2012 Dataset webpage [36]. The extracted data

contain information on people (Timbl), places and

things (Freebase, DBPedia, DataHub), shopping items

(BestBuy RDF extract), geographical entities

(LinkedGeoData, Geonames) and online news

(NYTimes). An individual source groups data on a

specific RDF resource; possibly obtained from

multiple remote datasets and linked together using

interlinks (released by the Linked Data initiative).

Overall, the dataset references 191 ontologies.

Due to its re-use of existing online data, our

experiment dataset can be considered as representative

of real-world use cases. At the same time however, we

note that different dataset compositions will influence

certain results, such as for LPS (see Section 7.4.2) and

type mediation (see Section 7.5.2.2). A systematic

study of the query service using multiple, distinct

dataset compositions is considered future work.

7.1.3 Query scenario

Our experimental evaluation is applied in a context-

aware scenario, using the SCOUT context-aware

application framework [11] as a client. As the user is

moving around, SCOUT continuously discovers new

physical entities in the user’s vicinity (e.g., using a

built-in mobile RFID reader), and extracts references

to online semantic sources describing the particular

entity (e.g., by reading URLs from RFID tags). To

allow integrated querying over this gradually

discovered semantic dataset, SCOUT dynamically

passes detected source references to the query service.

For the experiments, five context-aware application

queries were selected that request context-relevant

data, covering the different types of data in our

experiment dataset (e.g., geographical entities,

people). Two queries return geographical data, for

instance allowing to plot physical entities (e.g.,

shopping centers, airports) on a map. The other three

queries return “interesting” physical entities in the

vicinity (e.g., products for sale in an affordable price

range), together with details and indication of

relevance (e.g., manufacturer and user comments).

7.1.4 Methodology

All experiments were run on the aforementioned

device (Section 7.1.1), using the extracted dataset

(Section 7.1.2) and five selected queries (Section

7.1.3), in the following way:

Experiment initiation: before each experiment, the

Android device was re-started to clear memory.

Query service phases: each experiment involved

running the Source Indexing phase on all 5000 dataset

sources, and the Data Query phase on the 5

experiment queries (unless stated otherwise).

Experiment runs: each experiment was run five times

and the average processing times and battery usage

were taken, to minimize the effect of external factors

(e.g., OS background processes).

Below, we list the applied configurations, and make

general notes on the measuring methods.

Cache configuration: the cache components were

configured to use up to 75% of the dataset size for

persistent storage11, and 8Mb for in-memory storage12.

As we deal with non-evolving sources, cache

validation was disabled.

11 To force the necessity of cache removals.
12 This relatively low limit was chosen since other

components also take up memory (e.g., SIM, RDF graphs).

OWA features: where type inferencing was used, both

domain/range constraints and subtype relations were

leveraged to infer new types (only direct supertypes).

Memory usages: To accurately measure memory

usage, snapshots of the Android Java heap were taken

at runtime using Eclipse MAT [37], collecting the

retained heap size of the revelant classes.

Energy consumption: we utilize the Android

BatteryManager API to obtain the accurate energy

consumption (in Joules) of query service processes.

This involves sending an Intent each time energy

usage needs to be calculated. After draining the

battery purposefully, we found that mobile query

processes had consumed 18226 Joules; any capacity

percentage shown is relative to that number.

Dealing with network fluctations: to avoid network

fluctuations influencing results, the query service

retrieves RDF sources from persistent storage,

whereby retrieval times were substituted by average

download times from the sources’ online locations

(obtained by downloading 1000 random sources over

5 runs). In the same vein, ontologies referenced by the

Ontology Manager were stored locally, and download

times substituted in the same way. Evaluating the

impact of network quality is subject of future work.

7.2 Experiment 1: Source Index Model

This experiment evaluates the impact of source

metadata on selectivity when identifying query-

relevant online sources. To that end, we compare

different SIM variants, each keeping varying amounts

of metadata: SIM1 only indexes predicates; SIM2

indexes predicates and subject types; and SIM3

indexes predicates, subject and object types. In

addition, we consider the case where queries are

executed on the entire dataset (i.e., native query

engine performance). Since this experiment focuses on

SIM selectivity, it does not include a local cache.

7.2.1 Experiment 1: Results

Source Indexing phase

Table 1 shows SIM memory usage for the total

dataset; processing times, including metadata

extraction, index update and download; and energy

usage (between brackets).

 mem.

size
avg. dl.

processing

extract & add total

SIM1 1143
246

(0.13J)

40 (0.04J) 286 (0.17J)

SIM2 5789 54 (0.06J) 300 (0.19J)

SIM3 8893 57 (0.07J) 303 (0.20J)

Table 1. SIM – Source Indexing: sizes (Kb), processing

times per source (ms) and energy usage (J)

To process all 5000 sources, SIM1 consumed 4.7%

battery capacity, SIM2 consumed 5.2%, and SIM3

consumed 5.3%. This includes downloading the 5000

sources, which consumes ca. 3,5% battery capacity.

Data Query phase

Table 2 illustrates source selectivity, by showing the

number of identified (and potentially relevant) sources

per query. In addition, it shows the total query

resolution times and energy consumption.

 SIM1 SIM2 SIM3

exec. # exec. # exec.

Q1 2116 895310 (272J) 254 108199 (33J) 254 108270 (33J)

Q2 313 132289 (40J) 305 128906 (39J) 272 114949 (35J)

Q3 1293 546501 (166J) 319 134967 (41J) 319 134978 (41J)

Q4 1984 837748 (254J) 87 36803 (11J) 87 36805 (11J)

Q5 2146 932846 (291J) 256 132700 (47J) 256 132635 (48J)

Table 2. SIM – Data Query: selectivity (# sources), query

times (ms) and energy usage (J)

To execute all 5 queries, SIM1 consumed 5.6%

battery capacity, SIM2 and SIM3 consumed 0.9%.

Tables 3 to 5 show a breakup of the total query

resolution times, including source identification13 (id),

data collection (collect) and query execution14

(execute) times. For collection (collect), we separately

indicate source download times (dl) and time to

assemble the data into a query graph (assemble). We

indicate the energy usage for source downloads and

total resolution times.

SIM1

id

collect

execute

total dl assemble

Q1 730 520536 (271J) 372416 1628 895310 (272J)

Q2 16 76998 (40J) 55088 187 132289 (40J)

Q3 244 318078 (166J) 227568 611 546501 (166J)

Q4 219 488064 (254J) 349184 281 837748 (254J)

Q5 366 527916 (275J) 377696 26868 932846 (291J)

Table 3. SIM1 – Data query: times (ms) & energy usage (J)

SIM2

id

collect

execute

total dl assemble

Q1 161 62484 (33J) 44704 850 108199 (33J)

Q2 12 75030 (39J) 53680 184 128906 (39J)

Q3 20 78474 (41J) 56144 329 134967 (41J)

Q4 10 21402 (11J) 15312 79 36803 (11J)

Q5 46 62976 (33J) 45056 24622 132700 (47J)

Table 4. SIM2 – Data query: times (ms) & energy usage (J)

13 This includes query analysis time as well.
14 Query execution denotes the execution of the query on the

already collected and assembled dataset.

SIM3

id

collect
execute

total dl assemble

Q1 209 62484 (33J) 44704 873 108270 (33J)

Q2 11 66912 (35J) 47872 154 114949 (35J)

Q3 27 78474 (41J) 56144 333 134978 (41J)

Q4 11 21402 (11J) 15312 80 36805 (11J)

Q5 75 62976 (33J) 45056 24528 132635 (48J)

Table 5. SIM3 – Data query: times (ms) & energy usage (J)

The case without SIM (i.e., native query engine

performance) fails with an out-of-memory exception

for all queries, and is thus not shown here.

7.2.2 Experiment 1: Discussion

Table 1 shows that memory overhead, data processing

times and energy usage are larger for variants utilizing

increasing amounts of metadata, which is to be

expected. At the same time, the size of the largest SIM

(SIM3) still only corresponds to a fraction of the

dataset (ca. 1,7% of the 5000 sources), while the data

processing overhead is almost negligible (< 60ms) for

any SIM. In total, the largest SIM consumes ca. 6.2%

battery capacity, mostly due to the required source

downloads (4.3% download vs. 1.9% for processing).

As such, our requirement of Minimizing resource

usage (req. 1, Section 2) is met.

Table 2 indicates that SIM2 and SIM3 significantly

improve source selectivity (ruling out 95% of the

sources on average), thus adhering better to req. 3,

Minimizing online data downloads. In contrast, out-of-

memory errors occur when resolving any query

without a SIM. Comparing SIM2 and SIM3, we only

observe differences in selectivity for the 2nd query.

Since this query restricts the object types of each triple

pattern, SIM3 can utilize its additional metadata to

increase selectivity. We also observe that the number

of sources to download greatly influences energy

usage. Capacity-wise, by ruling out many more

sources, SIM2 and SIM3 reduce battery usage by 84%

compared to SIM1, to a mere ca. 0,9% battery usage.

However, Tables 4 and 5 show SIM2 and SIM3 still

incur an exceedingly high query resolution overhead

(ca. 0.5 – 2.25 minutes). Most of this overhead occurs

during data collection, which involves downloading

the sources and assembling all source data into an

(AndroJena) query graph (which requires parsing the

data). As shown in the table, over half this time is

spent on downloading the data (ca. 56%). Therefore,

employing a local cache has the potential to greatly

reduce collection overhead.

In conclusion, the SIM variants utilizing most source

metadata (SIM2 and SIM3) represent the best

solutions. These significantly increase selectivity, and

thus improve query execution times and energy

efficiency; while keeping data processing, memory

usage and battery consumption during source

processing in check. As such, regarding source

identification, this confirms that source metadata

indeed enables a balance between fine-grained data

retrieval, and memory/ processing requirements. On

the other hand, query resolution is clearly impractical,

necessitating a local cache to reduce download times.

7.3 Experiment 2: Cache

This section evaluates the impact of caching on query

service performance. We present an experiment

comparing two different cache organizations: Source

Cache, organizing cached data via origin source; and

Meta Cache, grouping data via shared metadata. For

Source Cache, the best performing SIM variant

(SIM3) is employed for online source identification.

As Meta Cache performs both online source

identification and local caching (see Section 5.1.2), it

is deployed autonomously. For these experiments,

Least Recently Used (LRU) is employed as removal

strategy; Section 7.4 shows the effect of applying

different removal strategies.

7.3.1 Experiment 2: Results

Source Indexing phase

In Table 6, we show the volatile memory and

persistent storage space utilized by Source Cache and

Meta Cache when serving the full dataset. We

separately indicate the memory overhead of

supporting data structures for the SIM and the cache

(i.e., Java objects and internal indices), and the actual

payload (i.e., the stored source data). For the latter, we

further differentiate between the measured payload

size (obtained via snapshots of the Java heap) and the

estimated payload size (between brackets), which is

approximated at runtime to dynamically manage

memory space (see Section 5.3). For ease of reference,

Table 6 also includes the corresponding SIM sizes, as

Source Cache is used in combination with the SIM.

cache

in-memory
persistent

SIM cache payload

Source 8893 7198 6323 (8192) 405285

Meta n/a 35821 16882 (7778) 426834

Table 6. Cache – Source Indexing: sizes (Kb).

In Table 7, we show the average data processing

overhead and energy usage, resulting from inserting

data into the cache (insert) and performing the LRU

removal strategy whenever the cache is full (removal).

Source Cache incurs an extra overhead of updating the

SIM (SIM). Meta Cache incurs an extra overhead for

extracting the different metadata combinations from

the RDF sources (extract).

cache

avg. dl.
add

removal total
SIM extract insert

Source
246

(0.13J)

65
(0.07J)

n/a
87

(0.08J)
1126
(0.8J)

1524
(1.1J)

Meta n/a
81

(0.09J)
81

(0.2J)
170

(0.3J)
578

(0.73J)

Table 7. Cache – Source Indexing: processing times (ms) &

energy usage (J) / source

To process 5000 sources, Source Cache consumes ca.

30% battery, while Meta Cache consumes ca. 20%. As

mentioned before, downloading 5000 sources

consumes ca. 3.5% battery capacity (included in the

percentages shown above).

Data Query phase

In Tables 8 and 9, we show the total query resolution

times and energy usages with their constituent parts.

In particular, we distinguish between the following

parts: 1) query analysis, which involves extracting

search constraints; 2) SIM access, required by Source

Cache for source identification; 3) cache access,

which comprises retrieving cached data (retrieval) and

downloading missing sources (miss); 4) data

assembly, which involves assembling the retrieved

data into a final query graph; and 5) query execution,

where the query is executed on the collected query

graph. For retrieval, we show the number of retrieved

in-memory/persistent cache units, as well as the total

retrieval time and energy usage. For misses, we

indicate the total number of misses and amount of

resulting source re-downloads (between brackets);

accompanied by the total incurred download times and

energy usage. The data collect part further shows the

total number of returned triples (#t), thus illustrating

the data retrieval fine-graininess. For Meta Cache, the

number of generated type triples, required to make the

type of cached resources explicit in the query dataset,

is shown between brackets (see Section 5.1.2). To

execute all 5 queries, Source Cache consumed 0.4%

battery, while Meta Cache consumed 0.2%.

Table 10 shows maintenance times and energy usage

resulting from cache access. This comprises 1/

updating the cache with new source data, in case

missing data was downloaded (update); and 2/ running

the removal strategy (removal), in case storage limits

were exceeded. Since maintenance occurs after query

resolution, it is not included in the access times. We

note that these results heavily depend on the utilized

removal strategy (see next section).

Source Cache Meta Cache

update removal update removal

Q1 0 75137 (44J) 3316 (16J) 13 (1.7J)

Q2 1499 (2.4J) 76237 (46J) 456 (1.4J) 1 (0.26J)

Q3 0 47249 (27J) 847 (4.4J) 258 (0.93J)

Q4 0 37742 (22J) 0 1 (0.01J)

Q5 0 54736 (31J) 0 1 (0.01J)

Table 10. Cache – Data Query: maintenance (ms) and
energy consumption (J)

Collectively, this maintenance process costs Source

Cache ca. 0.9% battery capacity, and for Meta Cache

ca. 0,04%.

7.3.2 Experiment 2: Discussion

As shown in Table 6, the Meta Cache supporting

structures (cache column) take up significantly more

memory (ca. factor 5) compared to Source cache, even

combined with the SIM. This is in line with

expectations, as Meta Cache requires 3 indices instead

of just 1 for Source Cache. Given the number of

distinct metadata combinations (24068), these indices

also comprise more entries, and many more storage

unit objects need to be kept (see Section 5.1.2).

However, this overhead still only takes up a fraction

of the total dataset; 6,7% for Meta Cache, and 3% for

Source Cache. We note that the payload size estimated

at runtime (between brackets) is slightly higher than

the actual payload size15, due to lack of effective

runtime memory analysis (see Section 5.3).

On the other hand, Table 7 shows that the overall

processing overhead and energy consumption is much

lower for Meta Cache. In particular, cache removal is

much less costly for Meta Cache, reducing total

processing and energy overhead. Meta Cache keeps

smaller and more fine-grained cache units, leading to

smaller storage and removal times. Also, we note that

Meta Cache incurs an extra extraction step, which

involves extracting source triples with their metadata

(extract column). Although we optimized this process

with factor 10 (see Section 4.2), it still takes up half of

the processing overhead. Although source processing

takes up 30% and 20% for Source and Meta Cache

respectively, we note that this is a one time cost, and

typically ensues over a longer period of time (thus

spreading mobile resource usage over time).

The utility of local caching is clearly indicated by

Tables 8 and 9. They show a dramatic decrease in total

resolution times, compared to when no cache is used

(see Table 2, 5): an average reduction of ca. 80% in

total resolution for Source Cache, and ca. 90% for

Meta Cache. Energy consumption is low (respectively

0,4% and 0.2% for all queries combined), down from

15 This difference is higher for Meta Cache, since more

cache unit objects are kept.

Source Cache

query
analysis

SIM
access

cache access
data

assembly

query
exec.

total

retrieval miss

total # time # time #t time

Q1 133 30 8/246 4758 (4.8J) 0 0 4762 (4.8J) 25364 293 370 (0.22J) 5588 (5.2J)

Q2 23 3 0/19 334 (0.38J) 253 (253) 62238 (34J) 62572 (34.4J) 31706 296 133 (0.09J) 63027 (34.5J)

Q3 5 26 0/319 4720 (5.1J) 0 0 4724 (5.1J) 24396 291 264 (0.17J) 5310 (5.3J)

Q4 8 3 0/87 2732 (2.6J) 0 0 2732 (2.6J) 13295 152 70 (0.04J) 2965 (2.7J)

Q5 12 65 4/252 3249 (5.6J) 0 0 3251 (5.6J) 13392 158 24443 (14J) 27929 (19.8J)

Table 8. Source Cache – Data Query: query resolution (ms) & energy usage (J)

Meta Cache

query

analysis

cache access
data assembly

query

exec.

total

retrieval miss
total # time # time #t time

Q1 63 1/609 2372 (2J) 176 (50) 12300 (6.4J) 14764 (9.1J) 1592 (19597) 529 342 (0.2J) 15698 (9.4J)

Q2 7 1/5 65(0.15J) 1 (32) 7872 (4.1J) 7938 (4.3J) 867 (1759) 56 112 (0.08J) 8113 (4.3J)

Q3 7 66/126 586 (1J) 24 (32) 7872 (4.1J) 8476 (5.2J) 1804 (25745) 639 214 (0.2J) 9336 (5.5J)

Q4 8 0/6 61 (0.16J) 0 0 61 (0.16J) 545 (648) 82 57 (0.06J) 208 (0.23J)

Q5 12 8/1 11 (0.36J) 0 0 11 (0.36J) 2914 (4292) 403 23657 (14J) 24083 (14.3J)

Table 9. Meta Cache – Data Query: query resolution (ms) & energy usage (J)

Table 9. Meta Cache – Data Query: query resolution (ms)

0.9% for SIM3 due to much less downloads. This

reduced battery usage is especially apparent when

looking at the individual energy usages in Tables 5

and 8-9.

In general, we observe that Meta Cache outperforms

Source cache, especially regarding cache retrieval. For

Meta Cache, retrieved cache units only comprise

source data associated with the requested query

metadata; resulting in more fine-grained retrieval, and

thus lower cache retrieval times (see retrieval – time)

and associated energy usage. This fine-graininess is

further illustrated by the number of collected triples

(see collect data - #t column). As such, Meta Cache

adheres to our requirement of Minimizing the query

dataset (Section 2, req. 2). In Source Cache, data is

instead retrieved per origin source, whereby other,

query-irrelevant data is also retrieved. Since most

cache units are stored persistently, the majority of the

data needs to be read from storage, significantly

increasing retrieval time and energy usage. For Meta

Cache, we further note that cached type statements do

not require (persistent) retrieval, but are instead

generated based on associated metadata (see Section

5.1.2). As before, these observations confirm that a

balance between fine-grained retrieval and memory

and data processing requirements can indeed be

achieved by focusing on source metadata.

Despite improvements in data retrieval, cache misses

have the ability to cause major problems for Meta

Cache (see miss column). Indeed, cache misses for

Q1, Q2 and Q3 cause a large number of source re-

downloads, which result in worse performance for

Meta Cache for Q1 and Q3. Since cache units keep

data sharing the same metadata, typically with

multiple origin sources, a cache miss requires re-

downloading all related sources. This is especially

problematic regarding energy usage, as downloading a

source takes more energy than retrieving it locally

(e.g., see Source Cache; Q5 retrieval time vs. Q2 miss

time). In the following section, we evaluate a removal

strategy aiming to mitigate this problem.

Although more triples are involved, data assembly

times are slightly lower for Source Cache (avg. 238

ms vs. 342 ms). Source Cache retrieves source data in

the form of AndroJena graphs, which can be very

efficiently combined (see Section 5.3). On the other

hand, assembly times for Meta Cache clearly depend

on the number of triples. Query execution times are

very similar for both Source and Meta Cache, and

rather depend on the query complexity than the query

dataset size. Regarding cache maintenance, Table 10

shows that cache removals are very costly for Source

Cache, due to more coarse-grained cache units.

7.4 Experiment 3: Removal strategies

In this experiment, we evaluate our novel Least-

Popular-Sources (LPS) removal strategy, designed to

tackle the Meta Cache cache-miss problem described

in the previous section. In particular, we study its

ensuing cache composition and effects on query

performance, and compare these findings to when a

regular strategy is applied (in this case, LRU). The

impact of using different factor weights in the LPS

removal value calculation is investigated, as well as

the impact of different persistent data groupings. We

note that the download time factor is not considered

here, since we aim to avoid network fluctuations

influencing experiment results (see Section 7.1.4).

7.4.1 Experiment 3: Results

Source Indexing phase

Table 11 shows the Meta Cache memory sizes16 for

the total dataset, when respectively applying LRU and

LPS. For each strategy, we indicate the total memory

size taken up by Meta Cache, size of the payload (i.e.,

cache unit objects and source data), and the size taken

up by extra supporting structures (e.g., indices) used

by the removal strategy (removal).

Meta Cache

removal
strategy

in-memory sizes

total payload removal

LRU 35821 16882 1197

LPS 45777 27905 2325

Table 11. Removal strategies – Source Indexing: Sizes (Kb)

In Table 12, we show the resulting cache composition,

focusing on “missing” data; i.e., data that was

removed to clear persistent storage space. This

includes missing keys (keys), which stand for

metadata combinations associated with removed cache

units; and missing sources (sources), which represent

sources to be re-downloaded when a particular

missing key is referenced (cache miss). The

distribution column relates missing keys with missing

sources; in particular, indicating the range of potential

source re-downloads for missing keys. For instance, a

missing key in range 1-10 incurs 1-10 source re -

downloads in case the key is referenced. For LPS, we

show the results for different weightings of the

popularity factors (see Section 5.2.1) in the strategy

column. These weightings were obtained by either

considering only one of the two factors, or the sum of

both factors, whereby the impact of one factor is

16 These were accurately measured using the Eclipse MAT.

potentially reduced (i.e., divided by a power of 10).
Note that since factor f1/100 + f2 yields the same

results as when f1 is not considered, it is left out.

LRU
LPS

removal-unit retrieval-unit

170 (0.3J) 117 (0.3J) 204 (0.4J)

Table 13. Removal strategies – Source Indexing:
replacement times (ms) & energy usage (J) / source

Table 13 summarizes the maintenance overhead. It

only shows the overhead (time and energy usage) of

running the removal strategy, since the extraction and

insertion operations (see Table 7) are not influenced

by removal strategies. For LPS, we further show the

results for two potential persistent data groupings. For

retrieval-unit grouping, persistent data sharing the

same metadata is stored in a single data structure (i.e.,

file); for removal-unit grouping, persistent data is

grouped based on their origin source. To obtain these

values, the f1+f2/100 popularity factor weighting was

employed; since this struck the best balance between

the number of missing keys and sources to be re-

downloaded. To process 5000 sources, LPS removal-

unit consumed 18% battery capacity, whereas LPS

retrieval-unit consumed 20%.

Data Query phase

Table 14 presents times and energy usage resulting

from cache access for LPS, as only these are

influenced by the removal strategy. We refer to Table

9 for results related to LRU. As before, we

differentiate between cache retrieval (retrieval) and

misses (miss). Also, we show the total resolution time

(also including constituent times not shown here). For

LPS, each retrieval unit requires loading one or more

storage units (see Section 5.2.2). Table 14 shows the

number of retrieval units, with the amount of loaded

storage units between brackets. In addition, the table

shows retrieval times for each persistent data grouping

method (a=removal-unit, b=retrieval-unit). As before,

the cache miss part shows the total number of misses,

accompanied by the resulting amount of sources to re-

download (between brackets). We again assume the f1

+ f2/100 popularity factor weighting29.

LPS – Meta cache

retrieval miss cache

access

total # time # time

Q1
784

(935)
a: 1301
b: 3594

5
(5)

1230
a: 2531 (2.3J)
b: 4824 (3.6J)

a: 3547 (2.6J)
b: 5854 (3.8J)

Q2
6

(272)

a: 383

b: 90
0 0

a: 383 (1.3J)

b: 90 (0.13J)

a: 583 (1.4J)

b: 289 (0.25J)

Q3
216

(957)
a: 1114
b: 695

0 0
a: 1114 (2.1J)

b: 695 (1J)
a: 2081 (2.3J)
b: 1536 (1.2J)

Q4
6

(467)

a: 587

b: 68
0 0

a: 587 (0.6J)

b: 68 (0.2J)

a: 750 (0.7J)

b: 214 (0.3J)

Q5
9

(2146)
a: 2226
b: 318

0 0
a: 2226 (2.4J)
b: 318 (0.9J)

a: 28269 (17J)
b: 25818 (16J)

Table 14. LPS – Data Query: query resolution (ms) and
energy consumption (J)

To execute 5 queries, LPS removal-unit and retrieval-

unit consumed ca. 0.1% battery capacity.

LRU LPS

replacement

replacement

a b

Q1 13 (1.7J) 3220 (2.1J) 3466 (3J)

Q2 1 (0.26J) 10524 (11J) 20304 (10J)

Q3 258 (0.93J) 6011 (7J) 20980 (13J)

Q4 1 (0.01J) 6213 (3.8J) 11949 (8J)

Q5 1 (0.01J) 55202 (90J) 58655 (40J)

Table 15. LPS – Data Query: cache maintenance (ms) and
energy consumption (J)

Finally, Table 15 shows the removal strategy times

and energy usage from cache access. Both adding new

data due to cache misses, as well as loading cached

data into memory, may cause the memory limit to be

exceeded, necessitating cache maintenance. For LPS,

we again indicate these times for removal-level (a)

and retrieval-level (b) grouping. Since maintenance

occurs after query resolution, it is not included in the

previously shown cache access times. We note that the

maintenance process takes up ca. 0.6% battery for

LPS removal-unit, and 0.4% for retrieval-unit.

7.4.2 Experiment 3: Discussion

Firstly, we observe that LPS incurs a larger memory

overhead (see Table 11). By decoupling removal,

storage and retrieval units, more cache unit objects

need to be kept in-memory, and extra indices are

needed to link these units. At the same time, while

strategy #keys #sources distribution

LRU 11058 1084 1-10: 10854 10-50: 196 50-100: 1 100-250: 6 250-500: 1

LPS f1+f2 9322 819 1-10: 9232 10-50: 82 50-100: 8 100-250: 0 250-500: 0

LPS f1 741 1586 1-10: 643 10-50: 60 50-100: 4 100-250: 21 250-500: 7

LPS f1+f2/100 961 1049 1-10: 857 10-50: 86 50-100: 4 100-250: 11 250-500: 3

LPS f1+ f2/10 2061 752 1-10: 1967 10-50: 85 50-100: 3 100-250: 6 250-500: 0

LPS f2 10314 785 1-10: 10224 10-50: 82 50-100: 8 100-250: 0 250-500: 0

LPS f1/10+ f2 10266 792 1-10: 10176 10-50: 82 50-100: 8 100-250: 0 250-500: 0

Table 12. Removal strategies – Source Indexing: removed data

presenting a 27% increase compared to LRU, this

overhead still only makes up 9% of the total dataset.

Table 12 illustrates how LPS copes with the cache-

miss issue of Meta Cache by affecting cache

composition; in particular, by enabling a balance

between the 1/ likelihood of cache misses, and 2/ the

number of source re-downloads. The results show that

as more preference is given to source-data popularity

(f1), the total number of missing keys is minimized;

decreasing the likelihood of cache misses. However,

the number of missing sources increases as well,

together with the amount of missing keys resulting in

many source re-downloads (see ranges 100-250 and

250-500). When source-metadata popularity (f2) is

preferred, the total number of missing sources

decreases, and the number of source re-downloads per

missing key is capped (i.e., no more outliers in ranges

100-250 and 250-500). However, the number of

missing keys increases drastically, raising the chance

of a cache miss. We note that the best weighting

depends on the online dataset composition; including

the number of distinct metadata combinations

contained in sources (f1), and the extent to which

metadata is shared across the online dataset (f2). As

such, further research on this issue is needed. For our

experiment dataset and queries, the weighting

f1+f2/100 yields the best balance. Table 13 further

shows that, when grouping persistent data per

removal-unit, memory management is slightly more

efficient, since only one persistent file is affected per

operation (see Section 5.2.2).

Reflecting the improved cache composition,

significantly less cache misses are observed during

query resolution (see Table 14). As a side-effect, this

also increases the cache retrieval time, since more

locally available (persistent) cache units are retrieved.

Moreover, since retrieval and storage units are

separated, a single retrieval likely results in accessing

and combining data from multiple storage units, also

increasing retrieval times. Nevertheless, overall query

resolution times are reduced, in particular for those

queries where cache misses presented a problem for

Meta Cache (see Tables 9 and 14; Q1, Q2, Q3)

compared to Source Cache. We also note that energy

usage is much lower for these queries (0,1% for all

queries); resulting from the fact that far less

downloads are necessary. By applying LPS, Meta

Cache now outperforms Source Cache for any query.

Further, we observe that grouping the persistent data

per retrieval-unit (option b in Table 14) optimizes

retrieval time, since only one persistent file needs to

be read per retrieval operation.

However, Table 15 again shows that cache

maintenance occurring after query resolution,

including performance times and energy usage, are

much higher for LPS than LRU. Since the LPS

removal unit is more coarse-grained (i.e., per origin

source) compared to LRU (i.e., per metadata

combination), larger removal penalties are incurred.

Even when grouping persistent data per removal unit

(column a), this maintenance results remain relatively

high. For queries 1 – 4 this is avg. ca. 6,5s, with an

outlier for query 5, which has a steeper overhead (ca.

59s). Further investigation and optimization of this

process is future work (see Section 9). We

nevertheless note that maintenance times and energy

consumption for Meta Cache + LPS represent a

significant improvement compared to the baseline

approach, Source Cache + LRU (i.e., ca 57%

improvement; see Tables 10, 15).

To conclude, the most optimal querying configuration

is Meta Cache + LPS (retrieval-unit). For the

relatively large experiment dataset, Meta Cache + LPS

requires more memory (27%), processing time (20%)

and slightly more energy (+0.1 J / source; although

total battery usage is virtually equivalent) than LRU

during the source indexing phase. These are one-time

costs, and are typically incurred over a longer period

of time (thus spreading mobile resource usage over

time). Once set up, Meta Cache + LPS results in fast

query execution times (6s; 0,3s; 1,5s; 0,2s, with an

outlier of 25s for query 5), and low energy

consumption (0,1% for all queries combined). These

energy reductions are again most apparent when

looking at individual energy usages in Tables 9, 14.

For the outlier query, we note that the bulk of the

resolution time (23s of 25s) is made up by the query

execution time of the external RDF library,

AndroJena. We thus conclude that for our experiment

queries and dataset, this optimal configuration

supplies realistic performance (barring the RDF

library performance issues with query 5). However,

LPS still incurs a high maintenance overhead after

query execution, depending on the query (3s, 20s, 21s,

12s, 59s). Although these times already present a good

improvement (ca. 57%) compared to the baseline

approach (i.e., Source Cache), cache maintenance

needs to be further optimized in future work.

7.5 Experiment 4: OWA features

This experiment evaluates the two Semantic Web

Open World Assumption (OWA) features, type

inferencing and type mediation. The best performing

variant of the SIM and cache were considered, namely

SIM3 and Meta Cache. We investigate the

improvements in data access and compare them to the

incurred performance and memory overhead.

7.5.1 Experiment 4: Results

Source Indexing phase

Type inferencing can be applied at two places in the

query service: on dataset sources (@source), and on

posed queries (@query). Clearly, only type

inferencing on sources influences performance during

the Source Indexing phase.

Table 16 shows the overheads for SIM3 and Meta

Cache when type inferencing is enabled. Firstly, it

shows the increased memory size for the total dataset.

Also, the extra computational overhead and energy

usage of type inferencing is shown (performance),

including the inferencing time itself (infer) and

ontology retrieval time (retrieval). We further show

the removal strategy time, which is influenced by the

increased cache unit size due to type inferencing (see

Section 6.2). We note that, due to the exceedingly

high amount of energy consumed by cache removal,

the mobile battery was drained after 4524 sources.

Type mediation requires resource information to be

tracked, such as types. To index this information, we

keep a separate resource index (see Section 6.1). Table

17 shows the computational overhead and energy

usage of type mediation for SIM3 and Meta Cache

(mediation), together with the memory consumed by

the resource index (index size). As the type mediation

processes differ for these components, different index

sizes and mediation results are incurred. We again

show the removal strategy time, which is likewise

influenced by type mediation (see Section 6.1). As

was the case before, cache removal drained the mobile

battery after 4464 sources.

 memory
size (Kb)

performance (ms)

infer retrieval removal

SIM3 60549

11 60

n/a

Meta Cache 49364 3024

(15446J – 3.4J / src)

Table 16. Type inferencing – Source Indexing: memory

(Kb), performance (ms) overhead and energy usage (J)

 index performance (ms)

 size (Kb) mediation removal

SIM3 71238 996 n/a

Meta Cache 63846 2264
3986

(6636J – 1.5J / src)

Table 17. Type mediation – Source Indexing: index size

(Kb), performance (ms) overhead and energy usage (J).

Data Query phase

Regarding type inferencing, we consider three cases

during querying; applying type inferencing on posed

queries (@query), on dataset sources (@source), and

on both (@both). Table 18 shows the effects on data

access, indicating the number of query results (res) as

well as the amount of sources identified by the SIM17

(src). For ease of reference, the table also shows the

original selectivity (original). In case the results differ

from the original, the new results are shown in bold.

 original @query @source @both

res src res src res src res src

Q1 4 254 0 49 4 254 4 215

Q2 272 272 272 271 658 313 658 313

Q3 319 319 0 0 319 319 319 319

Q4 77 87 77 87 77 87 77 87

Q5 148 256 0 256 148 256 148 256

Table 18. Type inferencing – Data Query: data access.

Table 19 shows the type inferencing overhead for both

components during querying. As type inferencing

needs to be re-applied to re-downloaded sources (see

Section 6.2), this process also incurs a query-time

overhead @source. We note that, since the source

indexing phase drained the battery, no battery usage

data is available for the data query phase.

@query

SIM Meta Cache

@source @source

Q1 174 45051 341

Q2 100 484646 420

Q3 128 383611 173

Q4 84 3743 0

Q5 156 120774 0

Table 19. Type inferencing – Data Query: data retrieval

(ms).

For type mediation, Table 20 illustrates the effects on

data access, indicating the new SIM source selectivity

(src) and new amount of query results (res) (values

differing from the original in bold). Also, the table

indicates the performance overhead during querying

(synchronization). Comparable to type inferencing, the

original contents of re-downloaded sources need to be

synchronized with mediated resource types (see

Section 6.1). As before, since the source indexing

phase drained the battery, no battery usage data is

available for the data query phase.

 selectivity synchronization

res src SIM3 Meta Cache

Q1 4 254 1104 113

Q2 273 272 1413 58

Q3 319 319 1190 151

Q4 77 87 235 40

Q5 148 256 1008 17

Table 20. Type mediation – Data Query: data access (ms)

7.5.2 Experiment 4: Discussion

This section discusses the effects of applying the

OWA features.

17 Although the Meta Cache selectivity is also influenced,

the increase in selectivity is most apparent for the SIM.

7.5.2.1 Type inferencing

From Table 16, we observe that type inferencing

results in large memory usage. While the

computational overhead of type inferencing itself is

acceptable, it incurs a very high removal time (and

associated high energy usage, draining the battery

after processing 4524 sources); due to the increased

size of the cache units. This contradicts our

requirement of reduced resource usage. As such, we

conclude that, in our mobile query service, type

inferencing is unfeasible at this point.

Regarding query resolution, Table 18 shows that

applying type inferencing on posed queries (@query)

leads to the search constraints ruling out more sources

(Q1, Q2, Q3), although results are no longer returned

for Q1, Q3 and Q5. On closer inspection, extra query

type constraints are inferred for those queries that are

not found in the online dataset. Typically, content

authors do not exhaustively type RDF resources; an

issue that can be resolved by additionally applying

type inferencing on sources. In that case (@both), the

same inferred types are added to the source metadata,

resolving the issue. Furthermore, many more query

results (658) are now returned for Q2, thus enhancing

data access. Finally, compared to only applying source

type inferencing (@source), we observe that

additionally enabling query type inferencing (@both)

improves data selectivity for Q1.

The above indicates that type inferencing should be

applied on both queries and sources (@both). Table 19

shows that for Meta Cache, type inferencing yields an

acceptable overhead, but exceedingly high processing

times for SIM. This results from re-applying type

inferencing to all identified sources (SIM), which are

more numerous than cache-missed sources. Since

online data sources are not under our control, they

cannot be updated with inferred types. Locally storing

inferred types for online sources could mitigate the

problem to some extent, and is considered future

work. We also note that inferred types may already be

materialized in the online dataset (see Section 6.2); if

so, type inferencing @source is unnecessary.

Given our observations regarding source indexing, we

conclude that type inferencing, when aiming to ensure

completeness of query results, is currently not feasible

in our query service. Analogously to RDF stores, type

inferencing can be switched on/off to suit dataset

composition, device capabilities and app requirements.

7.5.2.2 Type mediation

Table 17 shows that, just like with type inferencing,

type mediation results in large memory usage. At the

same time, computational overhead is problematic as

well; regarding both type mediation overhead and

removal overhead. Since type mediation involves

continuously loading previously stored cache units

into memory (see Section 6.2), it incurs an

exceedingly high removal time and energy usage

(draining the battery, as was the case for type

inferencing, after 4464 sources).

Both these observations contradict req. 1, Minimizing

resource usage, and makes type mediation currently

impractical for mobile devices for our current query

service. Analogous to type inferencing, type mediation

also incurs a query-time overhead called

synchronization (see Table 20). In this process,

identified sources (SIM) or cache-missed sources

(Meta Cache) are synchronized with the previously

mediated types. As before, this process is necessitated

by our setting where online sources cannot be updated.

However, overheads resulting from this process can be

considered acceptable for Meta Cache and SIM.

We further observe only a small impact on selectivity

and data access, with the same SIM source selectivity

and only one extra query result (Q2). In particular, this

extra result concerned an RDF resource that was

referenced but not typed in a first source, and then

typed in a second source. For our real world dataset,

situations where RDF resources were found in

multiple sources occurred 2097746 times, and only in

1,7% did these sources specify different resource

types, thus necessitating type mediation. Clearly, the

dataset composition will impact the number of

occurrences. At the same time, as our experiment

dataset was extracted from real-world sources, this

may be considered an indication for other datasets as

well. An a priori analysis could determine whether

type mediation is required, whereby the process could

be disabled to reduce memory and processing

overhead. This is subject of future work.

8. Related work

Currently, a number of mobile RDF stores exist to

access and manipulate locally stored RDF data,

including AndroJena [25], RDF On The Go [15], and

i-MoCo [16]. Analogous to our query service, the

MobiSem Context Framework [12] aims to supply

transparent and integrated access to multiple online

Semantic Web sources. The framework continuously

and pro-actively replicates Semantic Web data from

pre-configured online datasets, based on their

relevance to the user’s context, and supplies

programmatic access to the local data. Such pro-active

data selection avoids downloads at query-time, yet it is

necessarily domain-specific, and cannot support

arbitrary application queries. In contrast, our query

service is re-active and thus supports any scenario

encapsulated by application queries; at the cost of

potential download overhead at query time.

Query distribution approaches likewise supply

integrated query access across multiple online

datasets. As opposed to retrieving relevant data and

querying it locally, these systems distribute query

execution across dataset query endpoints. In

particular, they divide queries into subqueries, each of

which is executed on relevant datasets; and afterwards

integrate the results. Such approaches relieve clients

of resource-intensive query resolution, and are well

suited to query large datasets outfitted with online

query endpoints. However, they are not suitable for

semantic data not residing behind a query endpoint,

which is the focus of our query engine.

To identify query-relevant datasets, as well as

optimize query distribution, query distribution systems

typically rely on indices. The Distributed ARQ

(DARQ) [19] and Semantic Web Integrator and Query

Engine (SemWIQ) [20] systems each keep an index

with summary info on each dataset, including found

predicates, classes (SemWIQ) and resource patterns

(DARQ), indicating which subjects and objects occur

together with found predicates. Statistical information

is kept as well, which is used to further optimize query

distribution. The authors in [24] further index

predicate paths found in datasets, allowing a more

accurate identification of relevant datasets. In settings

where datasets are under third-party control, keeping

these indices up-to-date is paramount. The

aforementioned query distribution approaches, as well

as our query service, tackle this issue by focusing

mainly on schema-level information (e.g., classes and

predicates), as it can be assumed that schema-level

changes will occur less often. The Adaptive

Distributed Endpoint RDF Integration System

(ADERIS) system [38] aims to avoid this issue by

keeping only limited summary data, and instead

collecting runtime selectivity estimates.

Notwithstanding their similarity in using source

metadata for indexing purposes, we note that none of

these approaches explicitly takes the Open World

Assumption into account, and thus do not guarantee

query result completeness.

Many RDF stores focus on keeping extensive indices

to speed up access to RDF data, trading index space

and update efficiency for retrieval time. AndroJena is

a port of the well-known Jena RDF store to the

Android platform. To speed up query access, this store

uses 3 hash tables, respectively indexing the subjects,

predicates and objects of RDF triples. Depending on

the concrete terms specified in the query, AndroJena

selects between these hash tables. Our Meta Cache

utilizes a similar index structure for quick data

retrieval. However, since the Meta Cache indices keep

schema-level information instead of instances, they

contain significantly less entries. Similar to

AndroJena, other RDF stores also trade memory space

to optimize data access. The Yet Another RDF Store

(YARS) system [28] keeps 6 indices to cover all

potential triple access patterns. HexaStore [27]

similarly relies on a sextuple indexing scheme to

cover each potential triple access pattern. Aside from

their higher memory usage, caused by having multiple

instance-based indices, these approaches also have

higher update and insertion costs, since all indices

need to be updated [27]. Analogous to our query

service, both systems apply dictionary encoding to

reduce storage space and optimize query processing.

We note that two of the mobile RDF stores mentioned

at the beginning of the section, namely RDF On The

Go [15] and i-MoCo [16], are respectively built on top

of YARS and Hexastore.

Most caching approaches are based on client-server

architectures, where data can be retrieved on-demand

from the server and clients cache the data for later re-

use [22]. In case of a cache miss, the missing data is

directly obtained from the server. Query caching

presents a particular type of client-server caching,

whereby query results are cached and later re-used by

other queries, by using query folding techniques [39].

To deal with cache misses, the system generates a

remainder query to retrieve missing data from the

server. These kinds of approaches cannot be directly

applied in our setting, where data does not originate

from a particular online server, but is instead spread

across online files. Regarding cache replacement,

ample work has been put in developing policies for

mobile settings. Such policies typically rely on

semantic locality, which is based on general properties

and relations of data items. For instance, in [22],

semantic locality indicates that query results,

associated with physical locations closest to the user,

will be frequently referenced. Similarly, the Furthest-

Away-Replacement (FAR) policy [23] assumes that

cached data, which is located in the user’s movement

direction and currently nearby, will be frequently

referenced. As before, we opted for a replacement

policy that is instead domain-independent, and focuses

on dealing with our particular querying scenario where

data is captured in online files.

Finally, various invalidation strategies exist to detect

invalid, no longer up-to-date information in client-

server architectures and mobile scenarios. For

example, the Selective Adaptive Sorted (SAS)

invalidation strategy [40] ensures that updates on data

items on the server are reflected on the mobile device.

In [41, 42], the authors present location-dependent

cache invalidation, which ensures validity of location-

specific cached data retrieved from information

services. As before, such strategies are not suitable in

our setting, where data does not originate from a

single, special-purpose server. Instead, we rely on the

built-in cache support of HTTP, which is typically

also used by proxy caches.

9. Conclusions

We presented a general-purpose mobile query service,

which supplies client applications with integrated

querying capabilities across a currently untapped part

of the Semantic Web; consisting of large amounts of

small sources, namely RDF files and the growing set

of annotated websites. Mobile clients are hereby able

to outline and dynamically extend their relevant

selection of online semantic data, according to the

application scenario and requirements.

Our solution is conceived according to a number of

challenges occurring in this particular mobile querying

scenario, as well as their ensuing requirements. It

involves 1/ fine-grained identification of query-

relevant online sources, and 2/ locally caching data for

later re-use. In order to reconcile fine-grained data

selection, either during online source identification or

cached data retrieval, with memory and processing

usage, we developed source identification and caching

components leveraging the semantics of

RDF(S)/OWL data. To fully evaluate the effect of

source metadata in realizing this goal, we developed

and evaluated several variants for each component.

Regarding source identification, three Source Index

Models were implemented; each maintaining

increased amounts of metadata. We further explored

two cache variants, Source Cache and Meta Cache,

which respectively organize cached data based on

origin source and shared metadata. To optimize the

query service for large amounts of small, online

semantic sources, we introduced a removal strategy

called Least-Popular-Sources (LPS). Our query

service further explores supports for the Semantic

Web’s distributed nature and OWA by keeping

indexed metadata up-to-date, in light of newly

discovered sources (type mediation); and inferring

new metadata to potentially identify additional query

results (type inferencing).

An experimental validation, using a real-world dataset

in a context-aware application scenario, confirmed the

utility of source metadata to reach the aforementioned

goal; namely, balancing high data selectivity with

memory/performance overhead. We found that Meta

Cache, combined with the LPS (retrieval-unit)

removal strategy, supplied the best performance. After

an initial source indexing phase, which incurs a one-

time, noticeable cost in our experiments (but will

usually be spread over time), we show realistic query

performance and energy consumption. However, we

also observed that this configuration incurs notable

maintenance overhead after query execution; which is

steep in some cases. Finally, type inferencing, and to a

lesser extent type mediation, proved useful in

improving data access by returning additional query

results. However, the experiments showed they

currently exhibit impractical performance and energy

usage; mostly resulting from problematic cache

maintenance times.

Future work includes investigating how cache

maintenance for source-based replacement, which

involves persistently storing large amounts of data,

can be made more efficient. Optimizations for our

OWA features, including storing previously inferred

types (e.g., using incremental reasoning to cope with

dataset updates [43]), and analyzing the online dataset

to determine the necessity for type mediation, are also

considered future work. We further aim to consider

issues such as the composition of datasets and the

impact of network delays in future experiments.

Finally, additional efforts are needed to fully support

semantic data exploration in the “wild”. For instance,

existing interlinks (i.e., owl:sameAs statements) can be

leveraged to determine equivalence between two

resources with different URIs; and existing ontology

matching approaches can be applied to align

heterogeneous ontologies.

10. References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The

Story So Far. Int. J. Semant. Web Inf. Syst. 5, 1–22

(2009).

2. Sindice, http://sindice.com/.

3. Schema.org, http://schema.org/. Access date: 1/3/2015.

4. Adida, B.: hGRDDL: Bridging microformats and RDFa.

Journal of Web Semantics 6, 54–60 (2008).

5. Web Data Commons,

http://webdatacommons.org/structureddata/.

6. Reynolds, V., Hausenblas, M., Polleres, A., Hauswirth,

M., Hegde, V.: Exploiting linked open data for mobile

augmented reality. W3C Workshop: Augmented Reality

on the Web (2010).

7. Zander, S., Chiu, C., Sageder, G.: A computational model

for the integration of linked data in mobile augmented

reality applications. Proceedings of the 8th International

Conference on Semantic Systems. pp. 133–140. ACM,

New York, NY, USA (2012).

8. Ziegler, C.: Semantic web recommender systems. In

Proceedings of the Joint ICDE/EDBT Ph.D. Workshop

2004 (Heraklion. pp. 78–89. Springer-Verlag (2004).

9. Wilson, M., Russell, A., Smith, D.A., Owens, A.,

Schraefel, M.C.: mSpace Mobile: A Mobile Application

for the Semantic Web. User Semantic Web Workshop,

ISWC2005 (2005).

10. Becker, C., Bizer, C.: DBpedia Mobile: A Location-

Enabled Linked Data Browser. LDOW. CEUR-WS.org

(2008).

11. Van Woensel, W., Casteleyn, S., Paret, E., De Troyer,

O.: Mobile Querying of Online Semantic Web Data for

Context-Aware Applications. IEEE Internet Comput.

Spec. Issue (Semantics Locat. Serv. 15, 32–39 (2011).

12. Zander, S., Schandl, B.: A framework for context-

driven RDF data replication on mobile devices.

Proceedings of the 6th International Conference on

Semantic Systems. pp. 22:1–22:5. ACM, New York,

NY, USA (2010).

13. Keller, C., Pöhland, R., Brunk, S., Schlegel, T.: An

Adaptive Semantic Mobile Application for Individual

Touristic Exploration. HCI (3). pp. 434–443 (2014).

14. Puertas, E., Prieto, M.L., De Buenaga, M.: Mobile

Application for Accessing Biomedical Information

Using Linked Open Data. Proceedings of the 1st

Conference on Mobile and Information Technologies in

Medicine. , Prague, Czech Republic (2013).

15. Le-Phuoc, D., Parreira, J.X., Reynolds, V., Hauswirth,

M.: RDF On the Go: An RDF Storage and Query

Processor for Mobile Devices. 9th International

Semantic Web Conference (ISWC2010) (2010).

16. Weiss, C., Bernstein, A., Boccuzzo, S.: i-MoCo: Mobile

Conference Guide Storing and querying huge amounts

of Semantic Web data on the iPhone-iPod Touch.

Semantic Web Challenge 2008 (2008).

17. Van Woensel, W., Casteleyn, S., Paret, E., De Troyer,

O.: Transparent Mobile Querying of Online RDF

sources using Semantic Indexing and Caching. In:

Proceedings of the 12th International Conference on

Web Information System Engineering. pp. 185–198.

Springer-Verlag, Sydney, Australia (2011).

18. Bolchini, C., Curino, C., Schreiber, F.A., Tanca, L.:

Context Integration for Mobile Data Tailoring.

Proceedings of the 7th International Conference on

Mobile Data Management. p. 5. IEEE Computer

Society, Washington, DC, USA (2006).

19. Quilitz, B., Leser, U.: Querying distributed RDF data

sources with SPARQL. Proceedings of the 5th European

semantic web conference on The semantic web. pp.

524–538. Springer-Verlag, Berlin, Heidelberg (2008).

20. Langegger, A., Wöß, W., Blöchl, M.: A semantic web

middleware for virtual data integration on the web.

Proceedings of the 5th European semantic web

conference on The semantic web: research and

applications. pp. 493–507. Springer-Verlag (2008)

21. Bolchini, C., Quintarelli, E.: Filtering mobile data by

means of context: a methodology. Springer-Verlag,

LNCS 4278. pp. 1986–1995 (2006).

22. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D.,

Tan, M.: Semantic Data Caching and Replacement.

Proceedings of the 22th International Conference on

Very Large Data Bases. pp. 330–341. San Francisco,

CA, USA (1996).

23. Ren, Q., Dunham, M.H.: Using semantic caching to

manage location dependent data in mobile computing.

Proceedings of the 6th annual international conference

on Mobile computing and networking. pp. 210–221.

ACM, New York, NY, USA (2000).

24. Stuckenschmidt, H., Vdovjak, R., Broekstra, J.,

Houben, G.: Towards distributed processing of RDF

path queries. Int. J. Web Eng. Technol. 2, 207–230

(2005).

25. AndroJena, https://code.google.com/p/androjena/.

26. Phuoc, D. Le, Parreira, J.X., Reynolds, V., Hauswirth,

M.: RDF On the Go: RDF Storage and Query Processor

for Mobile Devices. In: ISWC Posters&Demos. (2010).

27. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple

indexing for semantic web data management. Proc.

VLDB Endow. 1, 1008–1019 (2008).

28. Harth, A., Decker, S.: Optimized Index Structures for

Querying RDF from the Web. Presented at the (2005).

29. Paret, E., Van Woensel, W., Casteleyn, S., Signer, B.,

De Troyer, O.: Efficient Querying of Distributed RDF

Sources in Mobile Settings based on a Source Index

Model. In: Proceedings of the 8th International

Conference on Mobile Web Information Systems. pp.

554–561. Elsevier, Niagara Falls, Canada (2011).

30. SPARQL Parser library, http://sparql.sourceforge.net/.

Access date: 1/3/2015.

31. Shanmugasundaram, J., Tufte, K., DeWitt, D., Maier,

D., Naughton, J.F.: Architecting a Network Query

Engine for Producing Partial Results. World Wide Web

Databases. 1997, 58–77 (2001).

32. Raman, V., Hellerstein, J.M.: Partial Results for Online

Query Processing. Proceedings of the 2002 ACM

SIGMOD International Conference on Management of

Data. pp. 275–286. ACM, New York, NY, USA (2002).

33. GeoFeatures,

http://niche.cs.dal.ca/materials/ontologies/lgd-

ontology.nt.bz2. Access date: 1/3/2015.

34. LGD Ontology,

http://niche.cs.dal.ca/materials/ontologies/

geoFeatures.owl. Access date: 1/3/2015.

35. Van Woensel, W.: Online Documentation,

http://niche.cs.dal.ca/materials/mobile-query-service.

36. Billion Triples Challenge 2012,

http://km.aifb.kit.edu/projects/btc-2012/. Access date:

1/3/2015.

37. Eclipse Memory Analyzer (MAT),

http://www.eclipse.org/mat/. Access date: 1/3/2015

38. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.:

Adaptive Integration of Distributed Semantic Web Data.

Databases Networked Inf. Syst. 5999, 174–193 (2010).

39. Ren, Q., Dunham, M.H., Kumar, V.: Semantic Caching

and Query Processing. IEEE Trans. Knowl. Data Eng.

15, 192–210 (2003).

40. Safa, H., Artail, H., Nahhas, M.: A cache invalidation

strategy for mobile networks. J. Netw. Comput. Appl.

33, 168–182 (2010).

41. Xu, J., Tang, X., Lee, D.L.: Performance Analysis of

Location-Dependent Cache Invalidation Schemes for

Mobile Environments. IEEE Trans. Knowl. Data Eng.

15, 474–488 (2003).

42. Zheng, B., Lee, W.-C., Lee, D.L.: On semantic caching

and query scheduling for mobile nearest-neighbor

search. Wirel. Netw. 10, 653–664 (2004).

43. Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann,

C., Parreira, Josiane Xavier Aroyo, L., Noy, N., Welty,

C., Janowicz, K.: DynamiTE: Parallel Materialization of

Dynamic RDF Data. 12th International Semantic Web

Conference. pp. 657–672. , Sydney, Australia (2013).

